首页> 外文期刊>IEEE Transactions on Knowledge and Data Engineering >Scalable Daily Human Behavioral Pattern Mining from Multivariate Temporal Data
【24h】

Scalable Daily Human Behavioral Pattern Mining from Multivariate Temporal Data

机译:从多元时间数据可扩展的日常人类行为模式挖掘

获取原文
获取原文并翻译 | 示例

摘要

This work introduces a set of scalable algorithms to identify patterns of human daily behaviors. These patterns are extracted from multivariate temporal data that have been collected from smartphones. We have exploited sensors that are available on these devices, and have identified frequent behavioral patterns with a temporal granularity, which has been inspired by the way individuals segment time into events. These patterns are helpful to both end-users and third parties who provide services based on this information. We have demonstrated our approach on two real-world datasets and showed that our pattern identification algorithms are scalable. This scalability makes analysis on resource constrained and small devices such as smartwatches feasible. Traditional data analysis systems are usually operated in a remote system outside the device. This is largely due to the lack of scalability originating from software and hardware restrictions of mobile/wearable devices. By analyzing the data on the device, the user has the control over the data, i.e., privacy, and the network costs will also be removed.
机译:这项工作引入了一组可伸缩的算法来识别人类日常行为的模式。这些模式是从智能手机收集的多元时间数据中提取的。我们利用了这些设备上可用的传感器,并以时间粒度识别了频繁的行为模式,这是受个人将时间分割为事件的方式的启发。这些模式对基于此信息提供服务的最终用户和第三方都有帮助。我们已经在两个真实的数据集上演示了我们的方法,并表明我们的模式识别算法是可扩展的。这种可扩展性使对资源受限的小型设备(如智能手表)的分析变得可行。传统的数据分析系统通常在设备外部的远程系统中运行。这主要是由于缺乏可移动性/可穿戴设备的软件和硬件限制引起的可伸缩性。通过分析设备上的数据,用户可以控制数据,即隐私,并且还将消除网络成本。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号