首页> 外文期刊>IEEE Transactions on Knowledge and Data Engineering >A Novel Recommendation Model Regularized with User Trust and Item Ratings
【24h】

A Novel Recommendation Model Regularized with User Trust and Item Ratings

机译:具有用户信任度和项目评级的正则化新型推荐模型

获取原文
获取原文并翻译 | 示例

摘要

We propose TrustSVD, a trust-based matrix factorization technique for recommendations. TrustSVD integrates multiple information sources into the recommendation model in order to reduce the data sparsity and cold start problems and their degradation of recommendation performance. An analysis of social trust data from four real-world data sets suggests that not only the explicit but also the implicit influence of both ratings and trust should be taken into consideration in a recommendation model. TrustSVD therefore builds on top of a state-of-the-art recommendation algorithm, SVD++ (which uses the explicit and implicit influence of rated items), by further incorporating both the explicit and implicit influence of trusted and trusting users on the prediction of items for an active user. The proposed technique is the first to extend SVD++ with social trust information. Experimental results on the four data sets demonstrate that TrustSVD achieves better accuracy than other ten counterparts recommendation techniques.
机译:我们提出TrustSVD,这是一种基于信任的矩阵分解技术,用于推荐。 TrustSVD将多个信息源集成到推荐模型中,以减少数据稀疏性和冷启动问题及其对推荐性能的降低。对来自四个实际数据集的社会信任数据的分析表明,推荐模型中不仅应考虑评级和信任的显式影响,而且还应考虑其隐含影响。因此,TrustSVD通过进一步结合受信任和信任用户对项目预测的显式和隐式影响,在最先进的推荐算法SVD ++(使用评级项目的显式和隐式影响)的基础上构建对于活跃用户。所提出的技术是第一个使用社会信任信息扩展SVD ++的技术。在这四个数据集上的实验结果表明,TrustSVD比其他十个同类推荐技术具有更高的准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号