首页> 外文期刊>IEEE Transactions on Knowledge and Data Engineering >Cold-Start Recommendation with Provable Guarantees: A Decoupled Approach
【24h】

Cold-Start Recommendation with Provable Guarantees: A Decoupled Approach

机译:可保证的冷启动建议:一种分离的方法

获取原文
获取原文并翻译 | 示例

摘要

Although the matrix completion paradigm provides an appealing solution to the collaborative filtering problem in recommendation systems, some major issues, such as data sparsity and cold-start problems, still remain open. In particular, when the rating data for a subset of users or items is entirely missing, commonly known as the problem, the standard matrix completion methods are inapplicable due the non-uniform sampling of available ratings. In recent years, there has been considerable interest in dealing with cold-start users or items that are principally based on the idea of exploiting other sources of information to compensate for this lack of rating data. In this paper, we propose a novel and general algorithmic framework based on matrix completion that simultaneously exploits the similarity information among users and items to alleviate the cold-start problem. In contrast to existing methods, our proposed recommender algorithm, dubbed DecRec, the following two aspects of the cold-start problem to effectively exploit the side information: (i) the completion of a rating sub-matrix, which is generated by excluding cold-start users/items from the original rating matrix; and (ii) the transduction of knowledge from existing ratings to cold-start items/users using side information. This crucial difference prevents the error propagation of completion and transduction, and also significantly boosts the performance when appropriate side information is incorporated. The recovery error of the proposed algorithm is analyzed theoretically and, to the best of our knowledge, this is the first algorithm that addresses the cold-start problem with provable guarantees on performance. Additionally, we also address the problem where both cold-start user and item challenges are present simultaneously. We conduct thorough experiments on real datasets that complement our theoretical results. These experiments demonstrate the ef- ectiveness of the proposed algorithm in handling the cold-start users/items problem and mitigating data sparsity issue.
机译:尽管矩阵完成范例为推荐系统中的协作筛选问题提供了一个有吸引力的解决方案,但一些主要问题(如数据稀疏性和冷启动问题)仍然存在。特别是,当完全缺少用户或项目子集的评分数据时(通常被称为问题),由于对可用评分的采样不均匀,因此标准矩阵完成方法不适用。近年来,与冷启动用户或项目打交道的兴趣很大,这些用户或项目主要是基于利用其他信息源来弥补此评级数据不足的想法。在本文中,我们提出了一种基于矩阵完成的新颖而通用的算法框架,该框架同时利用用户和项目之间的相似性信息来缓解冷启动问题。与现有方法相比,我们提出的推荐算法DecRec,是冷启动问题的以下两个方面,可以有效地利用辅助信息:(i)评级子矩阵的完成,该子矩阵是通过排除冷启动而产生的从原始评分矩阵开始用户/项目; (ii)使用辅助信息将知识从现有等级转换为冷启动项目/用户。这个关键的差异可防止完成和转导的错误传播,并且当合并适当的辅助信息时,也可以显着提高性能。从理论上分析了所提出算法的恢复误差,据我们所知,这是第一个以可证明的性能保证解决冷启动问题的算法。此外,我们还解决了同时出现冷启动用户和商品挑战的问题。我们对真实的数据集进行了全面的实验,以补充我们的理论结果。这些实验证明了该算法在处理冷启动用户/项目问题和减轻数据稀疏性问题方面的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号