首页> 美国卫生研究院文献>Springer Open Choice >Learning neural connectivity from firing activity: efficient algorithms with provable guarantees on topology
【2h】

Learning neural connectivity from firing activity: efficient algorithms with provable guarantees on topology

机译:从射击活动中学习神经连通性:高效的算法以及可证明的拓扑保证

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The connectivity of a neuronal network has a major effect on its functionality and role. It is generally believed that the complex network structure of the brain provides a physiological basis for information processing. Therefore, identifying the network’s topology has received a lot of attentions in neuroscience and has been the center of many research initiatives such as Human Connectome Project. Nevertheless, direct and invasive approaches that slice and observe the neural tissue have proven to be time consuming, complex and costly. As a result, the inverse methods that utilize firing activity of neurons in order to identify the (functional) connections have gained momentum recently, especially in light of rapid advances in recording technologies; It will soon be possible to simultaneously monitor the activities of tens of thousands of neurons in real time. While there are a number of excellent approaches that aim to identify the functional connections from firing activities, the scalability of the proposed techniques plays a major challenge in applying them on large-scale datasets of recorded firing activities. In exceptional cases where scalability has not been an issue, the theoretical performance guarantees are usually limited to a specific family of neurons or the type of firing activities. In this paper, we formulate the neural network reconstruction as an instance of a graph learning problem, where we observe the behavior of nodeseurons (i.e., firing activities) and aim to find the links/connections. We develop a scalable learning mechanism and derive the conditions under which the estimated graph for a network of Leaky Integrate and Fire (LIf) neurons matches the true underlying synaptic connections. We then validate the performance of the algorithm using artificially generated data (for benchmarking) and real data recorded from multiple hippocampal areas in rats.
机译:神经网络的连通性对其功能和作用有重大影响。通常认为,大脑的复杂网络结构为信息处理提供了生理基础。因此,识别网络的拓扑结构已在神经科学领域引起了广泛关注,并且已成为诸如Human Connectome Project等许多研究计划的中心。尽管如此,切片和观察神经组织的直接和侵入性方法已被证明是耗时,复杂和昂贵的。结果,近来利用神经元的激发活性来识别(功能)联系的逆方法获得了发展势头,特别是在记录技术迅速发展的情况下;不久将可以实时同时监视数万个神经元的活动。尽管有许多出色的方法旨在识别射击活动的功能联系,但所提出技术的可扩展性在将其应用到记录的射击活动的大规模数据集时遇到了重大挑战。在可伸缩性不是问题的特殊情况下,理论上的性能保证通常仅限于特定的神经元家族或激发活动的类型。在本文中,我们将神经网络重构公式化为图学习问题的一个实例,其中我们观察节点/神经元的行为(即激发活动)并旨在找到链接/连接。我们开发了一种可扩展的学习机制,并得出条件,在该条件下,泄漏集成和火(LIf)神经元网络的估计图与真正的基础突触连接相匹配。然后,我们使用人工生成的数据(用于基准测试)和从大鼠多个海马区域记录的真实数据验证算法的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号