首页> 外文期刊>Knowledge and Data Engineering, IEEE Transactions on >Node Immunization on Large Graphs: Theory and Algorithms
【24h】

Node Immunization on Large Graphs: Theory and Algorithms

机译:大图上的节点免疫:理论和算法

获取原文
获取原文并翻译 | 示例

摘要

Given a large graph, like a computer communication network, which nodes should we immunize (or monitor, or remove), to make it as robust as possible against a computer virus attack? This problem, referred to as the node immunization problem, is the core building block in many high-impact applications, ranging from public health, cybersecurity to viral marketing. A central component in node immunization is to find the best bridges of a given graph. In this setting, we typically want to determine the relative importance of a node (or a set of nodes) within the graph, for example, how valuable (as a bridge) a person or a group of persons is in a social network. First of all, we propose a novel ‘bridging’ score , inspired by immunology, and we show that its results agree with intuition for several realistic settings. Since the straightforward way to compute is computationally intractable, we then focus on the computational issues and propose a surprisingly efficient way () to estimate it. Experimental results on real graphs show that (1) the proposed ‘bridging’ score gives mining results consistent with intuition; and (2) th- proposed fast solution is up to faster than straightforward alternatives.
机译:给定一个较大的图形(例如计算机通信网络),我们应该对哪些节点进行免疫(或监视或删除),以使其对计算机病毒攻击尽可能地强大?这个问题被称为节点免疫问题,是许多具有高影响力的应用程序的核心组成部分,从公共卫生,网络安全到病毒营销,这些应用程序都是如此。节点免疫的一个重要组成部分是找到给定图的最佳桥梁。在这种设置下,我们通常希望确定图中一个节点(或一组节点)的相对重要性,例如,一个人或一组人在社交网络中的价值(作为桥梁)。首先,我们从免疫学的角度提出了一个新颖的“桥接”评分,并证明了其结果与几种现实环境的直觉相吻合。由于直接的计算方法在计算上是棘手的,因此我们将重点放在计算问题上,并提出一种令人惊讶的有效方法()进行估算。在真实图形上的实验结果表明:(1)提出的“桥接”分数给出了与直觉一致的挖掘结果; (2)提出的快速解决方案比直接替代方案要快。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号