首页> 外文期刊>IEEE Transactions on Knowledge and Data Engineering >Pre-Processing Censored Survival Data Using Inverse Covariance Matrix Based Calibration
【24h】

Pre-Processing Censored Survival Data Using Inverse Covariance Matrix Based Calibration

机译:使用基于协方差矩阵逆的标定预处理审查的生存数据

获取原文
获取原文并翻译 | 示例

摘要

Censoring is a common phenomenon that arises in many longitudinal studies where an event of interest could not be recorded within the given time frame. Censoring causes missing time-to-event labels, and this effect is compounded when dealing with datasets which have high amounts of censored instances. In addition, dependent censoring in the data, where censoring is dependent on the covariates in the data leads to bias in standard survival estimators. This motivates us to develop an approach for pre-processing censored data which calibrates the right censored (RC) times in an attempt to reduce the bias in the survival estimators. This calibration is done using an imputation method which estimates the sparse inverse covariance matrix over the dataset in an iterative convergence framework. During estimation, we apply row and column-based regularization to account for both row and column-wise correlations between different instances while imputing them. This is followed by comparing these imputed censored times with the original RC times to obtain the final calibrated RC times. These calibrated RC times can now be used in the survival dataset in place of the original RC times for more effective prediction. One of the major benefits of our calibration approach is that it is a pre-processing method for censored data which can be used in conjunction with any survival prediction algorithm and improve its performance. We evaluate the goodness of our approach using a wide array of survival prediction algorithms which are applied over crowdfunding data, electronic health records (EHRs), and synthetic censored datasets. Experimental results indicate that our calibration method improves the AUC values of survival prediction algorithms, compared to applying them directly on the original survival data.
机译:审查是许多纵向研究中常见的现象,在这些研究中,在给定的时间范围内无法记录感兴趣的事件。审查会导致缺少事件标记时间,并且在处理具有大量审查实例的数据集时,这种影响会更加复杂。此外,数据中的依存检查(其中检查取决于数据中的协变量)会导致标准生存估算器出现偏差。这激励我们开发一种用于预处理审查数据的方法,该方法可校准正确的审查(RC)时间,以减少生存估计器中的偏差。该校准使用插补方法完成,该插补方法在迭代收敛框架中估算数据集上的稀疏逆协方差矩阵。在估计期间,我们应用基于行和列的正则化来说明不同实例之间的行和列方向相关性,同时进行估算。然后,将这些估算的检查时间与原始RC时间进行比较,以获得最终的校准RC时间。现在,可以在生存数据集中使用这些校准的RC时间代替原始RC时间,以进行更有效的预测。我们的校准方法的主要优点之一是,它是一种用于检查数据的预处理方法,可以与任何生存预测算法结合使用并提高其性能。我们使用广泛的生存预测算法来评估我们方法的有效性,这些算法适用于众筹数据,电子健康记录(EHR)和综合审查数据集。实验结果表明,与直接将其应用于原始生存数据相比,我们的校准方法提高了生存预测算法的AUC值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号