首页> 外文期刊>IEEE Transactions on Knowledge and Data Engineering >Efficient Keyword-Aware Representative Travel Route Recommendation
【24h】

Efficient Keyword-Aware Representative Travel Route Recommendation

机译:高效的关键字感知代表旅行路线推荐

获取原文
获取原文并翻译 | 示例

摘要

With the popularity of social media (e.g., Facebook and Flicker), users can easily share their check-in records and photos during their trips. In view of the huge number of user historical mobility records in social media, we aim to discover travel experiences to facilitate trip planning. When planning a trip, users always have specific preferences regarding their trips. Instead of restricting users to limited query options such as locations, activities, or time periods, we consider arbitrary text descriptions as keywords about personalized requirements. Moreover, a diverse and representative set of recommended travel routes is needed. Prior works have elaborated on mining and ranking existing routes from check-in data. To meet the need for automatic trip organization, we claim that more features of Places of Interest (POIs) should be extracted. Therefore, in this paper, we propose an efficient Keyword-aware Representative Travel Route framework that uses knowledge extraction from users’ historical mobility records and social interactions. Explicitly, we have designed a keyword extraction module to classify the POI-related tags, for effective matching with query keywords. We have further designed a route reconstruction algorithm to construct route candidates that fulfill the requirements. To provide befitting query results, we explore Representative Skyline concepts, that is, the Skyline routes which best describe the trade-offs among different POI features. To evaluate the effectiveness and efficiency of the proposed algorithms, we have conducted extensive experiments on real location-based social network datasets, and the experiment results show that our methods do indeed demonstrate good performance compared to state-of-the-art works.
机译:随着社交媒体(例如Facebook和Flicker)的普及,用户可以在旅途中轻松共享其签到记录和照片。鉴于社交媒体中用户历史移动记录的数量众多,我们旨在发现旅行体验以促进旅行计划。在计划行程时,用户始终会对其行程有特定的偏好。除了将用户限制在有限的查询选项(例如位置,活动或时间段)之外,我们将任意文本描述视为有关个性化需求的关键字。此外,需要一套多样化且具有代表性的推荐旅行路线。先前的工作已经详细阐述了根据登机数据对现有路线进行挖掘和排名。为了满足自动旅行组织的需求,我们主张应该提取景点(POI)的更多功能。因此,在本文中,我们提出了一个有效的关键字感知代表旅行路线框架,该框架使用了从用户的历史移动记录和社交互动中提取的知识。明确地,我们设计了一个关键字提取模块来对与POI相关的标签进行分类,以便与查询关键字进行有效匹配。我们还设计了一种路由重构算法,以构造满足要求的候选路由。为了提供合适的查询结果,我们探索了代表性的天际线概念,即最能描述不同POI功能之间权衡的天际线路线。为了评估所提出算法的有效性和效率,我们在基于真实位置的社交网络数据集上进行了广泛的实验,实验结果表明,与最新技术相比,我们的方法确实表现出良好的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号