首页> 外文期刊>Knowledge and Data Engineering, IEEE Transactions on >Privacy Enhanced Matrix Factorization for Recommendation with Local Differential Privacy
【24h】

Privacy Enhanced Matrix Factorization for Recommendation with Local Differential Privacy

机译:隐私增强矩阵分解,用于具有本地差分隐私的推荐

获取原文
获取原文并翻译 | 示例

摘要

Recommender systems are collecting and analyzing user data to provide better user experience. However, several privacy concerns have been raised when a recommender knows user's set of items or their ratings. A number of solutions have been suggested to improve privacy of legacy recommender systems, but the existing solutions in the literature can protect either items or ratings only. In this paper, we propose a recommender system that protects both user's items and ratings. For this, we develop novel matrix factorization algorithms under local differential privacy (LDP). In a recommender system with LDP, individual users randomize their data themselves to satisfy differential privacy and send the perturbed data to the recommender. Then, the recommender computes aggregates of the perturbed data. This framework ensures that both user's items and ratings remain private from the recommender. However, applying LDP to matrix factorization typically raises utility issues with i) high dimensionality due to a large number of items and ii) iterative estimation algorithms. To tackle these technical challenges, we adopt dimensionality reduction technique and a novel binary mechanism based on sampling. We additionally introduce a factor that stabilizes the perturbed gradients. With MovieLens and LibimSeTi datasets, we evaluate recommendation accuracy of our recommender system and demonstrate that our algorithm performs better than the existing differentially private gradient descent algorithm for matrix factorization under stronger privacy requirements.
机译:推荐系统正在收集和分析用户数据,以提供更好的用户体验。但是,当推荐者知道用户的项目集或评分时,就会引起一些隐私问题。已经提出了许多解决方案来改善传统推荐系统的隐私,但是文献中的现有解决方案只能保护项目或等级。在本文中,我们提出了一种可同时保护用户的商品和评分的推荐系统。为此,我们在局部差分隐私(LDP)下开发了新颖的矩阵分解算法。在具有LDP的推荐器系统中,各个用户自己将其数据随机化以满足不同的隐私权,并将受干扰的数据发送给推荐器。然后,推荐器计算干扰数据的集合。该框架可确保用户的商品和评分都不受推荐者的欢迎。但是,将LDP应用于矩阵分解通常会带来以下实用性问题:i)由于有大量项目而导致的维数高; ii)迭代估计算法。为了解决这些技术难题,我们采用降维技术和基于采样的新型二进制机制。我们还引入了一个稳定受干扰梯度的因素。利用MovieLens和LibimSeTi数据集,我们评估了推荐系统的推荐准确性,并证明了在更强的隐私要求下,我们的算法比现有的差分私有梯度下降算法在矩阵分解方面表现更好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号