首页> 外文期刊>IEEE Transactions on Knowledge and Data Engineering >Scalable Spectral Clustering for Overlapping Community Detection in Large-Scale Networks
【24h】

Scalable Spectral Clustering for Overlapping Community Detection in Large-Scale Networks

机译:大规模网络中重叠社区检测的可扩展频谱聚类

获取原文
获取原文并翻译 | 示例

摘要

While the majority of methods for community detection produce disjoint communities of nodes, most real-world networks naturally involve overlapping communities. In this paper, a scalable method for the detection of overlapping communities in large networks is proposed. The method is based on an extension of the notion of normalized cut to cope with overlapping communities. A spectral clustering algorithm is formulated to solve the related cut minimization problem. When available, the algorithm may take into account prior information about the likelihood for each node to belong to several communities. This information can either be extracted from the available metadata or from node centrality measures. We also introduce a hierarchical version of the algorithm to automatically detect the number of communities. In addition, a new benchmark model extending the stochastic blockmodel for graphs with overlapping communities is formulated. Our experiments show that the proposed spectral method outperforms the state-of-the-art algorithms in terms of computational complexity and accuracy on our benchmark graph model and on five real-world networks, including a lexical network and large-scale social networks. The scalability of the proposed algorithm is also demonstrated on large synthetic graphs with millions of nodes and edges.
机译:尽管大多数用于社区检测的方法会产生不相交的节点社区,但大多数现实世界的网络自然会包含重叠的社区。本文提出了一种可扩展的方法来检测大型网络中的重叠社区。该方法基于对归一化切割概念的扩展,以应对重叠社区。提出了一种谱聚类算法来解决相关的割最小化问题。当可用时,该算法可以考虑关于每个节点属于几个社区的可能性的先验信息。该信息可以从可用的元数据中提取,也可以从节点中心性度量中提取。我们还介绍了该算法的分层版本,以自动检测社区数量。此外,制定了新的基准模型,该模型扩展了具有重叠社区的图的随机块模型。我们的实验表明,在我们的基准图模型以及包括词汇网络和大规模社交网络的五个实际网络中,所提出的频谱方法在计算复杂性和准确性方面都优于最新算法。该算法的可扩展性也在具有数百万个节点和边的大型合成图上得到了证明。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号