首页> 外文期刊>IEEE/ACM Transactions on Networking >A Local-Neighborhood Information Based Overlapping Community Detection Algorithm for Large-Scale Complex Networks
【24h】

A Local-Neighborhood Information Based Overlapping Community Detection Algorithm for Large-Scale Complex Networks

机译:基于局部信息的大规模复杂网络的重叠群落检测算法

获取原文
获取原文并翻译 | 示例

摘要

As the size of available networks is continuously increasing (even with millions of nodes), large-scale complex networks are receiving significant attention. While existing overlapping-community detection algorithms are quite effective in analyzing complex networks, most of these algorithms suffer from scalability issues when applied to large-scale complex networks, which can have more than 1,000,000 nodes. To address this problem, we propose an efficient local-expansion-based overlapping-community detection algorithm using local-neighborhood information (OCLN). During the iterative expansion process, only neighbors of nodes added in the last iteration (rather than all neighbors) are considered to determine whether they can join the community. This significantly reduces the computational cost and enhances the scalability for community detection in large-scale networks. A belonging coefficient is also proposed in OCLN to filter out incorrectly identified nodes. Theoretical analysis demonstrates that the computational complexity of the proposed OCLN is linear with respect to the size of the network to be detected. Experiments on large-scale LFR benchmark and real-world networks indicate the effectiveness of OCLN for overlapping-community detection in large-scale networks, in terms of both computational efficiency and detected-community quality.
机译:随着可用网络的大小不断增加(即使是数百万节点),大规模复杂网络也在受到重大关注。虽然现有的重叠社区检测算法在分析复杂网络方面非常有效,但是当应用于大规模复杂网络时,大多数这些算法遭受可扩展性问题,这可以具有超过1,000,000个节点。为解决这个问题,我们提出了一种使用本地 - 邻域信息(OCLN)的基于局部扩展的重叠群落检测算法。在迭代扩展过程中,只有在最后一次迭代(而不是所有邻居)中添加的节点的邻居被认为是确定它们是否可以加入社区。这显着降低了计算成本,增强了大规模网络中社区检测的可扩展性。在OCLN中也提出了一种归属系数以滤除错误识别的节点。理论分析表明,所提出的OCLN的计算复杂性相对于要检测的网络的大小是线性的。大规模LFR基准和现实网络的实验表明,在计算效率和检测社区质量方面,OCLN在大型网络中进行重叠社区检测的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号