首页> 外文期刊>IEEE Transactions on Knowledge and Data Engineering >Flow Prediction in Spatio-Temporal Networks Based on Multitask Deep Learning
【24h】

Flow Prediction in Spatio-Temporal Networks Based on Multitask Deep Learning

机译:基于多任务深度学习的时空网络流量预测

获取原文
获取原文并翻译 | 示例

摘要

Predicting flows (e.g., the traffic of vehicles, crowds, and bikes), consisting of the in-out traffic at a node and transitions between different nodes, in a spatio-temporal network plays an important role in transportation systems. However, this is a very challenging problem, affected by multiple complex factors, such as the spatial correlation between different locations, temporal correlation among different time intervals, and external factors (like events and weather). In addition, the flow at a node (called node flow) and transitions between nodes (edge flow) mutually influence each other. To address these issues, we propose a multitask deep-learning framework that simultaneously predicts the node flow and edge flow throughout a spatio-temporal network. Based on fully convolutional networks, our approach designs two sophisticated models for predicting node flow and edge flow, respectively. These two models are connected by coupling their latent representations of middle layers, and trained together. The external factor is also integrated into the framework through a gating fusion mechanism. In the edge flow prediction model, we employ an embedding component to deal with the sparse transitions between nodes. We evaluate our method based on the taxicab data in Beijing and New York City. Experimental results show the advantages of our method beyond 11 baselines, such as ConvLSTM, CNN, and Markov Random Field.
机译:时空网络中的流量预测(例如车辆,人群和自行车的流量)由一个节点的进出流量和不同节点之间的过渡组成,在交通运输系统中起着重要的作用。但是,这是一个非常具有挑战性的问题,受多种复杂因素的影响,例如不同位置之间的空间相关性,不同时间间隔之间的时间相关性以及外部因素(例如事件和天气)。另外,节点处的流(称为节点流)和节点之间的过渡(边缘流)会相互影响。为了解决这些问题,我们提出了一个多任务深度学习框架,该框架可以同时预测整个时空网络中的节点流和边缘流。基于全卷积网络,我们的方法设计了两个复杂的模型,分别用于预测节点流和边缘流。这两个模型通过耦合其中间层的潜在表示而相互连接,并一起训练。外部因素也通过门控融合机制集成到框架中。在边缘流预测模型中,我们采用嵌入组件来处理节点之间的稀疏过渡。我们根据北京和纽约市的出租车数据评估我们的方法。实验结果表明,我们的方法的优点超出了11个基线,例如ConvLSTM,CNN和Markov随机场。

著录项

  • 来源
  • 作者

  • 作者单位

    JD Digits JD Intelligent City Res & Urban Comp Business Uni Beijing 100176 Peoples R China|Southwest Jiaotong Univ Inst Artificial Intelligence Chengdu 611756 Peoples R China;

    JD Digits JD Intelligent City Res & Urban Comp Business Uni Beijing 100176 Peoples R China|Xidian Univ Sch Comp Sci & Technol Xian 710071 Peoples R China|Chinese Acad Sci Shenzhen Inst Adv Technol Shenzhen 518055 Peoples R China;

    Xidian Univ Sch Comp Sci & Technol Xian 710071 Peoples R China;

    Southwest Jiaotong Univ Sch Informat Sci & Technol Chengdu 611756 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Correlation; Predictive models; Urban areas; Matrix converters; Sparse matrices; Sun; Deep learning; spatio-temporal data; urban computing;

    机译:相关性预测模型;城市地区;矩阵转换器;稀疏矩阵;太阳;深度学习;时空数据城市计算;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号