首页> 外文期刊>IEEE Transactions on Knowledge and Data Engineering >GERF: A Group Event Recommendation Framework Based on Learning-to-Rank
【24h】

GERF: A Group Event Recommendation Framework Based on Learning-to-Rank

机译:GERF:基于从学习到排名的小组活动推荐框架

获取原文
获取原文并翻译 | 示例

摘要

Event recommendation is an essential means to enable people to find attractive upcoming social events, such as party, exhibition, and concert. While growing line of research has focused on suggesting events to individuals, making event recommendation for a group of users has not been well studied. In this paper, we aim to recommend upcoming events for a group of users. We formalize group recommendation as a ranking problem and propose a group event recommendation framework GERF based on learning-to-rank technique. Specifically, we first analyze different contextual influences on user's event attendance, and extract preference of user to event considering each contextual influence. Then, the preference scores of the users in a group are taken as the features for learning-to-rank to model the preference of the group. Moreover, a fast pairwise learning-to-rank algorithm, Bayesian group ranking, is proposed to learn ranking model for each group. Our framework is easily to incorporate additional contextual influences, and can be applied to other group recommendation scenarios. Extensive experiments have been conducted to evaluate the performance of GERF on two real-world datasets and demonstrate the appealing performance of our method on both accuracy and time efficiency.
机译:活动推荐是使人们能够找到即将到来的有吸引力的社交活动(例如聚会,展览和音乐会)的重要手段。尽管越来越多的研究重点是向个人建议事件,但对一组用户进行事件推荐的研究还不够深入。在本文中,我们旨在为一组用户推荐即将发生的事件。我们将小组推荐正式化为排名问题,并提出了一种基于学习排名技术的小组活动推荐框架GERF。具体来说,我们首先分析对用户事件出席率的不同上下文影响,然后考虑每种上下文影响提取用户对事件的偏好。然后,将组中用户的偏好分数作为用于学习排名的特征以对组的偏好进行建模。此外,提出了一种快速的成对学习排名算法,即贝叶斯组排名,以学习每个组的排名模型。我们的框架很容易合并其他上下文影响,并且可以应用于其他小组推荐方案。已经进行了广泛的实验,以评估GERF在两个实际数据集上的性能,并证明了我们的方法在准确性和时间效率上都具有吸引力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号