首页> 外文期刊>IEEE Transactions on Knowledge and Data Engineering >Exploring Communities in Large Profiled Graphs
【24h】

Exploring Communities in Large Profiled Graphs

机译:在大型剖析图中探索社区

获取原文
获取原文并翻译 | 示例

摘要

Given a graph G and a vertex q is an element of G, the community search (CS) problem aims to efficiently find a subgraph of G whose vertices are closely related to q. Communities are prevalent in social and biological networks, and can be used in product advertisement and social event recommendation. In this paper, we study profiled community search (PCS), where CS is performed on a profiled graph. This is a graph in which each vertex has labels arranged in a hierarchical manner. Extensive experiments show that PCS can identify communities with themes that are common to their vertices, and is more effective than existing CS approaches. As a naive solution for PCS is highly expensive, we have also developed a tree index, which facilitates efficient and online solutions for PCS.
机译:给定图G和顶点q是G的元素,社区搜索(CS)问题旨在有效地找到其顶点与q密切相关的G的子图。社区在社会和生物网络中很普遍,可以用于产品广告和社交活动推荐。在本文中,我们研究了配置文件社区搜索(PCS),其中在配置文件图上执行CS。这是一个图形,其中每个顶点都有以分层方式排列的标签。大量的实验表明,PCS可以识别具有相同顶点主题的社区,并且比现有的CS方法更有效。由于PCS的幼稚解决方案非常昂贵,因此我们还开发了树索引,该索引有助于PCS的高效在线解决方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号