首页> 外文期刊>IEEE Transactions on Knowledge and Data Engineering >Passive and Partially Active Fault Tolerance for Massively Parallel Stream Processing Engines
【24h】

Passive and Partially Active Fault Tolerance for Massively Parallel Stream Processing Engines

机译:大规模并行流处理引擎的被动容错和部分主动容错

获取原文
获取原文并翻译 | 示例

摘要

Fault-tolerance techniques for stream processing engines can be categorized into passive and active approaches. However, both approaches have their own inadequacies in Massively Parallel Stream Processing Engines (MPSPE). The passive approach incurs a long recovery latency especially when a number of correlated nodes fail simultaneously, while the active approach requires extra replication resources. In this paper, we propose a new fault-tolerance framework, which is Passive and Partially Active (PPA). In a PPA scheme, the passive approach is applied to all tasks while only a selected set of tasks will be actively replicated. The number of actively replicated tasks depends on the available resources. If tasks without active replicas fail, tentative outputs will be generated before the completion of the recovery process. We also propose effective and efficient algorithms to optimize a partially active replication plan to maximize the quality of tentative outputs. We implemented PPA on top of Storm, an open-source MPSPE and conducted extensive experiments using both real and synthetic datasets to verify the effectiveness of our approach.
机译:流处理引擎的容错技术可以分为被动方法和主动方法。但是,这两种方法在大规模并行流处理引擎(MPSPE)中都有其不足之处。被动方法会导致较长的恢复延迟,尤其是当多个相关节点同时发生故障时,而被动方法则需要额外的复制资源。在本文中,我们提出了一种新的容错框架,即被动和部分主动(PPA)。在PPA方案中,被动方法适用于所有任务,而只有一组选定的任务将被主动复制。主动复制的任务数取决于可用资源。如果没有活动副本的任务失败,则将在恢复过程完成之前生成临时输出。我们还提出有效和高效的算法,以优化部分活动的复制计划,以最大程度地提高临时输出的质量。我们在Storm(一种开源MPSPE)之上实现了PPA,并使用真实和合成数据集进行了广泛的实验,以验证我们方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号