首页> 外文期刊>IEEE Transactions on Information Theory >Higher order crossings spectral analysis of an almost periodic random sequence in noise
【24h】

Higher order crossings spectral analysis of an almost periodic random sequence in noise

机译:噪声中几乎周期随机序列的高阶交叉谱分析

获取原文
获取原文并翻译 | 示例

摘要

The precise effect of noise on HOC (higher-order crossing) sequences is examined, settling some issues not dealt with previously. It is shown that it is possible to construct HOC sequences that converge to true discrete frequencies in a mixed spectrum even for very low signal-to-noise ratios. The availability of the correlation function is then assumed. When the expected HOCs (from repeated differences) are known, the correlation function is automatically known as well. However, other quantities, not just the expected HOC, can serve the same purpose. For example, under the Gaussian assumption, the correlation function can be obtained from that of the binary process derived by clipping the original process at any level.
机译:研究了噪声对HOC(高阶交叉)序列的精确影响,解决了一些以前未解决的问题。结果表明,即使对于非常低的信噪比,也可以构建在混合频谱中收敛到真正离散频率的HOC序列。然后假设相关函数的可用性。当已知期望的HOC(来自重复差)时,相关函数也会自动已知。但是,其他数量,而不仅仅是预期的HOC,也可以达到相同的目的。例如,在高斯假设下,可以从通过将原始过程裁剪到任何级别而得出的二元过程的函数来获得相关函数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号