首页> 外文期刊>IEEE Transactions on Signal Processing >Zero-crossing based spectral analysis and SVD spectral analysis for formant frequency estimation in noise
【24h】

Zero-crossing based spectral analysis and SVD spectral analysis for formant frequency estimation in noise

机译:基于零交叉的频谱分析和SVD频谱分析用于噪声中共振峰频率估计

获取原文
获取原文并翻译 | 示例

摘要

The authors discuss a method for spectral analysis of noise corrupted signals using statistical properties of the zero-crossing intervals. It is shown that an initial stage of filter-bank analysis is effective for achieving noise robustness. The technique is compared with currently popular spectral analysis techniques based on singular value decomposition and is found to provide generally better resolution and lower variance at low signal to noise ratios (SNRs). These techniques, along with three established methods and three variations of these method, are further evaluated for their effectiveness for formant frequency estimation of noise corrupted speech. The theoretical results predict and experimental results confirm that the zero-crossing method performs well for estimating low frequencies and hence for first formant frequency estimation in speech at high noise levels ( approximately 0 dB SNR). Otherwise, J.A. Cadzow's high performance method (1983) is found to be a close alternative for reliable spectral estimation. As expected the overall performance of all techniques is found to degrade for speech data. The standard autocorrelation-LPC method is found best for clean speech and all methods deteriorate roughly equally in noise.
机译:作者讨论了一种使用零交叉间隔的统计特性对噪声破坏信号进行频谱分析的方法。结果表明,滤波器组分析的初始阶段对于实现噪声鲁棒性是有效的。将该技术与基于奇异值分解的当前流行的频谱分析技术进行了比较,发现该技术在低信噪比(SNR)时通常提供更好的分辨率和更低的方差。进一步评估了这些技术以及三种已建立的方法和这些方法的三个变体,以评估其对噪声破坏的语音的共振峰频率估计的有效性。理论结果预测和实验结果证实,过零法在估计低频时效果良好,因此在高噪声水平(约0 dB SNR)下对语音中的第一共振峰频率估计效果很好。否则,J.A。发现Cadzow的高性能方法(1983年)是可靠光谱估计的替代方案。不出所料,发现所有技术的整体性能都会降低语音数据。标准的自相关-LPC方法最适合用于干净的语音,并且所有方法在噪声方面的衰减大致相同。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号