Runlength-limited (RLL) and digital-sum-limited (DSL) codes are considered. For these codes the finite and asymptotic lower bounds on achievable rates for the given minimum Hamming distance are derived. Using generating functions and trellis diagram techniques, the authors prove the existence of RLL- and DSL-codes of rate R and minimum distance d= delta n, such that Ror=z>or=1, for large enough code length n. The value lambda /sub 1/(z) is the maximum modulus eigenvalue of a certain matrix that is dependent on the limitations and some parameter z. The bounds for the limited codes improve the lower bound of H. C. Ferreira (1984).
展开▼
机译:考虑了行程限制(RLL)和数字和限制(DSL)码。对于这些代码,得出了在给定的最小汉明距离下可达到的速率的有限和渐近下界。使用生成函数和网格图技术,作者证明了速率为R且最小距离d = delta n的RLL和DSL代码的存在,因此R or = z> or = 1。 λ/ sub 1 /(z)的值是取决于限制和某些参数z的某个矩阵的最大模数特征值。有限代码的边界改善了H. C. Ferreira(1984)的下限。
展开▼