首页> 外文期刊>IEEE Transactions on Information Theory >Constructions of binary constant-weight cyclic codes and cyclically permutable codes
【24h】

Constructions of binary constant-weight cyclic codes and cyclically permutable codes

机译:二进制恒权循环码和循环置换码的构造

获取原文
获取原文并翻译 | 示例

摘要

A general theorem is proved showing how to obtain a constant-weight binary cyclic code from a p-ary linear cyclic code, where p is a prime, by using a representation of GF(p) as cyclic shifts of a binary p-tuple. Based on this theorem, constructions are given for four classes of binary constant-weight codes. The first two classes are shown to achieve the Johnson upper bound on minimum distance asymptotically for long block lengths. The other two classes are shown similarly to meet asymptotically the low-rate Plotkin upper bound on minimum distance. A simple method is given for selecting virtually the maximum number of cyclically distinct codewords with full cyclic order from Reed-Solomon codes and from Berlekamp-Justesen maximum-distance-separable codes. Two correspondingly optimum classes of constant-weight cyclically permutable codes are constructed. It is shown that cyclically permutable codes provide a natural solution to the problem of constructing protocol-sequence sets for the M-active-out-of-T-users collision channel without feedback.
机译:证明了一个一般性定理,该定理表明如何通过使用GF(p)表示作为二进制p元组的循环移位,从p元线性循环码(其中p是素数)中获得恒权二进制二进制代码。基于该定理,给出了四类二进制恒权码的构造。对于长块长度,前两个类别显示为渐近地在最小距离上达到Johnson上限。相似地显示了其他两个类别,以渐近地满足最小距离上的低速率Plotkin上限。给出了一种简单的方法,用于从Reed-Solomon码和Berlekamp-Justesen最大距离可分离码中以全循环顺序选择最大数量的循环不同码字。构造了两个相应的最佳类别的恒定权重循环可置换代码。结果表明,循环可置换代码为构建无反馈的T用户活跃用户冲突信道的协议序列集提供了自然的解决方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号