首页> 外文期刊>IEEE Transactions on Information Theory >Correcting a specified set of likely error patterns
【24h】

Correcting a specified set of likely error patterns

机译:更正指定的一组可能的错误模式

获取原文
获取原文并翻译 | 示例

摘要

The main concern of this article is to find linear codes whichwill correct a set of arbitrary error patterns. Although linear codeswhich have been designed for correcting random error patterns and bursterror patterns can be used, we would like to find codes which willcorrect a specified set of error patterns with the fewest possibleredundant bits. Here, to reduce the complexity involved in finding thecode with the smallest redundancy which can correct a specified set oferror patterns, algebraic codes whose parity check matrix exhibits aparticular structure are considered. If the number of redundant bits isT, the columns of the parity check matrix must be increasing powers of afield element in GF(2T). Given a set of error patterns to becorrected, computations to determine the code rates possible for thesetype of codes and hence the redundancy for different codeword lengthsare presented. Results for various sets of error patterns suggest thatthe redundancy of these algebraic codes is close to the minimumredundancy possible for the set of error patterns specified and for anycodeword length
机译:本文的主要关注点是找到可纠正一组任意错误模式的线性代码。尽管可以使用为纠正随机错误模式和突发错误模式而设计的线性代码,但我们还是希望找到能够以最少的冗余位来纠正一组特定的错误模式的代码。在此,为了减少寻找具有最小冗余度的代码以解决特定的错误模式集合所涉及的复杂性,考虑了奇偶校验矩阵表现出特殊结构的代数代码。如果冗余位数为T,则奇偶校验矩阵的列必须是GF(2T)中场元素的幂。给定一组要校正的错误模式,提出了确定这些类型的代码可能的代码率以及因此确定不同代码字长度的冗余度的计算。各种错误模式集的结果表明,这些代数代码的冗余度接近于指定的错误模式集和任何码字长度的最小冗余度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号