首页> 外文期刊>IEEE Transactions on Information Theory >Fast generalized minimum-distance decoding of algebraic-geometry and Reed-Solomon codes
【24h】

Fast generalized minimum-distance decoding of algebraic-geometry and Reed-Solomon codes

机译:代数几何和Reed-Solomon码的快速广义最小距离解码

获取原文
获取原文并翻译 | 示例

摘要

Generalized minimum-distance (GMD) decoding is a standard soft-decoding method for block codes. We derive an efficient general GMD decoding scheme for linear block codes in the framework of error-correcting pairs. Special attention is paid to Reed-Solomon (RS) codes and one-point algebraic-geometry (AG) codes. For RS codes of length n and minimum Hamming distance d the GMD decoding complexity turns out to be in the order O(nd), where the complexity is counted as the number of multiplications in the field of concern. For AG codes the GMD decoding complexity is highly dependent on the curve in consideration. It is shown that we can find all relevant error-erasure-locating functions with complexity O(o/sub 1d), where o/sub 1/ is the size of the first nongap in the function space associated with the code. A full GMD decoding procedure for a one-point AG code can be performed with complexity O(dn/sup 2/).
机译:通用最小距离(GMD)解码是用于分组码的标准软解码方法。我们在纠错对的框架内,为线性分组码导出了一种有效的通用GMD解码方案。特别注意里德-所罗门(RS)码和一点代数几何(AG)码。对于长度为n且最小汉明距离为d的RS码,GMD解码复杂度约为O(nd),其中复杂度被计算为相关领域中的乘法次数。对于AG码,GMD解码复杂度高度取决于所考虑的曲线。结果表明,我们可以找到所有相关的具有复杂度O(o / sub 1 / nd)的错误消除定位函数,其中o / sub 1 /是与代码关联的函数空间中第一个非间隙的大小。可以用复杂度O(dn / sup 2 /)来执行针对单点AG码的完整GMD解码过程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号