首页> 外文期刊>IEEE Transactions on Information Theory >Time discretization of continuous-time filters and smoothers for HMM parameter estimation
【24h】

Time discretization of continuous-time filters and smoothers for HMM parameter estimation

机译:HMM参数估计的连续时间滤波器和平滑器的时间离散

获取原文
获取原文并翻译 | 示例

摘要

In this paper we propose algorithms for parameter estimation of fast-sampled homogeneous Markov chains observed in white Gaussian noise. Our algorithms are obtained by the robust discretization of stochastic differential equations involved in the estimation of continuous-time hidden Markov models (HMM's) via the EM algorithm. We present two algorithms: the first is based on the robust discretization of continuous-time filters that were recently obtained by Elliott to estimate quantities used in the EM algorithm; the second is based on the discretization of continuous-time smoothers, yielding essentially the well-known Baum-Welch re-estimation equations. The smoothing formulas for continuous-time HMM's are new, and their derivation involves two-sided stochastic integrals. The choice of discretization results in equations which are identical to those obtained by deriving the results directly in discrete time. The filter-based EM algorithm has negligible memory requirements; indeed, independent of the number of observations. In comparison the smoother-based discrete-time EM algorithm requires the use of the forward-backward algorithm, which is a fixed-interval smoothing algorithm and has memory requirements proportional to the number of observations. On the other hand, the computational complexity of the filter-based EM algorithm is greater than that of the smoother-based scheme. However, the filters may be suitable for parallel implementation. Using computer simulations we compare the smoother-based and filter-based EM algorithms for HMM estimation. We provide also estimates for the discretization error.
机译:在本文中,我们提出了用于在高斯白噪声中观察到的快速采样齐次马尔可夫链参数估计的算法。我们的算法是通过随机微分方程的鲁棒离散化而获得的,该随机微分方程通过EM算法估计连续时间隐马尔可夫模型(HMM)。我们提出了两种算法:第一种是基于Elliott最近获得的用于估计EM算法中使用量的连续时间滤波器的稳健离散化;第二种是基于连续时间滤波器的鲁棒离散化。第二个是基于连续时间平滑器的离散化,本质上得出了众所周知的Baum-Welch重新估计方程。连续时间HMM的平滑公式是新的,其推导涉及两侧随机积分。离散化的选择得出的方程与通过离散时间直接推导得出的方程相同。基于过滤器的EM算法对内存的要求可以忽略不计;实际上,与观察数无关。相比之下,基于平滑器的离散时间EM算法需要使用前向后向算法,该算法是固定间隔的平滑算法,并且内存需求与观察次数成正比。另一方面,基于滤波器的EM算法的计算复杂度大于基于平滑器的方案的计算复杂度。但是,这些过滤器可能适用于并行实现。使用计算机仿真,我们比较了基于平滑器和基于滤波器的EM算法进行HMM估计。我们还提供了离散误差的估计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号