首页> 外文期刊>IEEE Transactions on Information Theory >Minimal tail-biting trellises: the Golay code and more
【24h】

Minimal tail-biting trellises: the Golay code and more

机译:最小的咬人格子:Golay代码及更多

获取原文
获取原文并翻译 | 示例

摘要

Tail-biting trellis representations of block codes are investigated. We develop some elementary theory, and present several intriguing examples, which we hope will stimulate further developments in this field. In particular, we construct a 16-state 12-section structurally invariant tail-biting trellis for the (24, 12, 8) binary Golay code. This tail-biting trellis representation is minimal: it simultaneously minimizes all conceivable measures of state complexity. Moreover, it compares favorably with the minimal conventional 12-section trellis for the Golay code, which has 256 states at its midpoint, or with the best quasi-cyclic representation of this code, which leads to a 64-state tail-biting trellis. Unwrapping this tail-biting trellis produces a periodically time-varying 16-state rate-1/2 "convolutional Golay code" with d=8, which has attractive performance/complexity properties. We furthermore show that the (6, 3, 4) quaternary hexacode has a minimal 8-state group tail-biting trellis, even though it has no such linear trellis over F/sub 4/. Minimal tail-biting trellises are also constructed for the (8, 4, 4) binary Hamming code, the (4, 2, 3) ternary tetracode, the (4, 2, 3) code over F/sub 4/, and the Z/sub 4/-linear (8. 4, 4) octacode.
机译:研究了尾码的尾码网格表示。我们发展了一些基础理论,并提出了一些有趣的例子,希望这些例子能够刺激该领域的进一步发展。特别是,我们为(24、12、8)二进制Golay代码构造了16个状态的12个部分的结构不变的咬尾网格。这种无用的网格表示形式是最小的:它同时最小化了所有可能的状态复杂性度量。此外,它与Golay代码的最小常规12段格架(在其中点具有256个状态)或该代码的最佳准循环表示形式(后者导致64个状态的咬尾格架)相比具有优势。解开该咬尾网格,将产生周期性的时变16状态速率为1/2的“卷积Golay码”,其d = 8,具有诱人的性能/复杂性。我们进一步表明,(6、3、4)四级六码具有最小的8状态组尾位网格,即使在F / sub 4 /上没有这样的线性网格。还为(8、4、4)二进制汉明码,(4、2、3)三元四码,在F / sub 4 /上的(4、2、3)码以及Z / sub 4 /-线性(8.,4、4)八码。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号