首页> 外文期刊>IEEE Transactions on Information Theory >Generalized matched filters and univariate Neyman-Pearson detectors for image target detection
【24h】

Generalized matched filters and univariate Neyman-Pearson detectors for image target detection

机译:用于图像目标检测的广义匹配滤波器和单变量Neyman-Pearson检测器

获取原文
获取原文并翻译 | 示例

摘要

I derive two-stage, statistically suboptimal target detectors for images. The first, or transformation, stage is a "generalized matched filter" (GMF) that linearly transforms the input image. I propose three rational signal-to-noise-ratio criteria whose maximization yields the three GMFs. The second, or detection, stage is a univariate "Neyman-Pearson detector" (NPD), which executes a pointwise likelihood ratio test on the GMF transformed images. Experiments on infrared and synthetic-aperture radar imagery compare GMF/NPDs with several established detectors.
机译:我推导了两阶段,统计上次优的图像目标检测器。第一阶段或转换阶段是对输入图像进行线性转换的“广义匹配滤波器”(GMF)。我提出了三个合理的信噪比标准,它们的最大化产生了三个GMF。第二阶段或检测阶段是单变量“ Neyman-Pearson检测器”(NPD),它对GMF变换后的图像执行逐点似然比测试。红外和合成孔径雷达成像实验将GMF / NPD与几个已建立的探测器进行了比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号