首页> 外文期刊>IEEE Transactions on Information Theory >Parity-check density versus performance of binary linear block codes over memoryless symmetric channels
【24h】

Parity-check density versus performance of binary linear block codes over memoryless symmetric channels

机译:无记忆对称通道上的奇偶校验密度与二进制线性块代码的性能

获取原文
获取原文并翻译 | 示例

摘要

We derive lower bounds on the density of parity-check matrices of binary linear codes which are used over memoryless binary-input output-symmetric (MBIOS) channels. The bounds are expressed in terms of the gap between the rate of these codes for which reliable communications is achievable and the channel capacity; they are valid for every sequence of binary linear block codes if there exists a decoding algorithm under which the average bit-error probability vanishes. For every MBIOS channel, we construct a sequence of ensembles of regular low-density parity-check (LDPC) codes, so that an upper bound on the asymptotic density of their parity-check matrices scales similarly to the lower bound. The tightness of the lower bound is demonstrated for the binary erasure channel by analyzing a sequence of ensembles of right-regular LDPC codes which was introduced by Shokrollahi, and which is known to achieve the capacity of this channel. Under iterative message-passing decoding, we show that this sequence of ensembles is asymptotically optimal (in a sense to be defined in this paper), strengthening a result of Shokrollahi. Finally, we derive lower bounds on the bit-error probability and on the gap to capacity for binary linear block codes which are represented by bipartite graphs, and study their performance limitations over MBIOS channels. The latter bounds provide a quantitative measure for the number of cycles of bipartite graphs which represent good error-correction codes.
机译:我们推导了用于无内存二进制输入输出对称(MBIOS)通道的二进制线性代码奇偶校验矩阵密度的下界。边界以这些代码可实现可靠通信的速率与信道容量之间的差距表示;如果存在平均位错误概率消失的解码算法,则它们对二进制线性块码的每个序列均有效。对于每个MBIOS通道,我们构造一个由规则的低密度奇偶校验(LDPC)码组成的序列序列,以使它们的奇偶校验矩阵的渐近密度的上限与下限相似。通过分析Shokrollahi引入的右正则LDPC码的合奏序列,证明了二进制擦除通道的下限的紧密性,众所周知该序列可以实现该通道的容量。在迭代消息传递解码下,我们表明该合奏序列是渐近最优的(在某种意义上,本文将对此进行定义),从而增强了Shokrollahi的结果。最后,我们得出了由二部图表示的二进制误码率和误码率的下界,并研究了它们在MBIOS通道上的性能局限性。后面的界限为代表良好的纠错码的二部图的循环数提供了一种量化方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号