...
首页> 外文期刊>IEEE Transactions on Information Theory >Parity-Check Density Versus Performance of Binary Linear Block Codes: New Bounds and Applications
【24h】

Parity-Check Density Versus Performance of Binary Linear Block Codes: New Bounds and Applications

机译:奇偶校验密度与二进制线性块代码的性能:新的界限和应用

获取原文
获取原文并翻译 | 示例

摘要

The moderate complexity of low-density parity-check (LDPC) codes under iterative decoding is attributed to the sparseness of their parity-check matrices. It is therefore of interest to consider how sparse parity-check matrices of binary linear block codes can be a function of the gap between their achievable rates and the channel capacity. This issue was addressed by Sason and Urbanke, and it is revisited in this paper. The remarkable performance of LDPC codes under practical and suboptimal decoding algorithms motivates the assessment of the inherent loss in performance which is attributed to the structure of the code or ensemble under maximum-likelihood (ML) decoding, and the additional loss which is imposed by the suboptimality of the decoder. These issues are addressed by obtaining upper bounds on the achievable rates of binary linear block codes, and lower bounds on the asymptotic density of their parity-check matrices as a function of the gap between their achievable rates and the channel capacity; these bounds are valid under ML decoding, and hence, they are valid for any suboptimal decoding algorithm. The new bounds improve on previously reported results by Burshtein and by Sason and Urbanke, and they hold for the case where the transmission takes place over an arbitrary memoryless binary-input output-symmetric (MBIOS) channel. The significance of these information-theoretic bounds is in assessing the tradeoff between the asymptotic performance of LDPC codes and their decoding complexity (per iteration) under message-passing decoding. They are also helpful in studying the potential achievable rates of ensembles of LDPC codes under optimal decoding; by comparing these thresholds with those calculated by the density evolution technique, one obtains a measure for the asymptotic suboptimality of iterative decoding algorithms
机译:迭代解码下低密度奇偶校验(LDPC)码的适度复杂性归因于其奇偶校验矩阵的稀疏性。因此,感兴趣的是考虑二进制线性分组码的稀疏奇偶校验矩阵如何成为其可实现速率与信道容量之间的间隙的函数。 Sason和Urbanke解决了这个问题,本文对此进行了重新讨论。 LDPC码在实际和次优解码算法下的出色性能激发了对性能固有损失的评估,该损失归因于最大似然(ML)解码下的码或整体结构,以及由LDPC码造成的额外损失。解码器的次优性。这些问题通过获得二进制线性分组码的可达到速率的上限以及其奇偶校验矩阵的渐近密度的下界作为其可实现速率与信道容量之间的差的函数来解决。这些界限在ML解码下有效,因此对于任何次优解码算法均有效。新界限改善了Burshtein以及Sason和Urbanke先前报告的结果,并且适用于通过任意无内存二进制输入输出对称(MBIOS)通道进行传输的情况。这些信息理论界限的意义在于评估消息传递解码下LDPC码的渐近性能与其解码复杂度(每次迭代)之间的折衷。它们还有助于研究在最佳解码下LDPC码的潜在可实现速率。通过将这些阈值与通过密度演化技术计算出的阈值进行比较,可以得出一种迭代解码算法的渐近次最优性的度量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号