首页> 外文期刊>IEEE Transactions on Information Theory >The maximum squared correlation, sum capacity, and total asymptotic efficiency of minimum total-squared-correlation binary signature sets
【24h】

The maximum squared correlation, sum capacity, and total asymptotic efficiency of minimum total-squared-correlation binary signature sets

机译:最小总平方相关二进制签名集的最大平方相关,和容量以及总渐近效率

获取原文
获取原文并翻译 | 示例

摘要

The total squared correlation (TSC), maximum squared correlation (MSC), sum capacity (C/sub sum/), and total asymptotic efficiency (TAE) of underloaded signature sets, as well as the TSC and C/sub sum/ of overloaded signature sets are metrics that are optimized simultaneously over the real/complex field. In this present work, closed-form expressions are derived for the MSC, C/sub sum/, and TAE of minimum-TSC binary signature sets. The expressions disprove the general equivalence of these performance metrics over the binary field and establish conditions on the number of signatures and signature length under which simultaneous optimization can or cannot be possible. The sum-capacity loss of the recently designed minimum-TSC binary sets is found to be rather negligible in comparison with minimum-TSC real/complex-valued (Welch-bound-equality) sets.
机译:欠载签名集的总平方相关(TSC),最大平方相关(MSC),总容量(C / sub sum /)和总渐近效率(TAE)以及重载的TSC和C / sub sum /签名集是在实/复杂字段上同时优化的指标。在本工作中,为最小TSC二进制签名集的MSC,C / sub sum /和TAE导出了封闭形式的表达式。这些表达式在二进制字段上证明了这些性能指标的一般等效性,并在签名数量和签名长度上建立了条件,在这些条件下可以进行或不可以进行同时优化。与最小TSC实/复值(韦尔边界约束)集相比,最近设计的最小TSC二进制集的总容量损失被忽略不计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号