首页> 外文期刊>IEEE Transactions on Information Theory >A Lower Bound on the Probability of Undetected Error for Binary Constant Weight Codes
【24h】

A Lower Bound on the Probability of Undetected Error for Binary Constant Weight Codes

机译:二进制恒量码的未检测到错误概率的下界

获取原文
获取原文并翻译 | 示例

摘要

In this correspondence, we study the probability of undetected error for binary constant weight codes. First, we derive a new lower bound on the probability of undetected error for binary constant weight codes. Next, we show that this bound is tight if and only if the binary constant weight codes are generated from certain$t$-designs in combinatorial design theory. This means that these binary constant weight codes generated from certain$t$-designs are uniformly optimal for error detection. Along the way, we determine the distance distributions of such binary constant weight codes. In particular, it is shown that binary constant weight codes generated from Steiner systems are uniformly optimal for error detection. Thus, we prove a conjecture of Xia, Fu, Jiang, and Ling. Furthermore, the distance distribution of a binary constant weight code generated from a Steiner system is determined. Finally, we study the exponent of the probability of undetected error for binary constant weight codes. We derive some bounds on the exponent of the probability of undetected error for binary constant weight codes. These bounds enable us to extend the region in which the exponent of the probability of undetected error is exactly determined.
机译:在这种对应关系中,我们研究了二进制恒权码未检测到错误的概率。首先,我们得出了二进制恒权码未检出错误概率的新下限。接下来,我们证明,当且仅当从组合设计理论中的某些$ t $ -designs生成二进制恒权码时,此边界才是紧的。这意味着从某些设计中生成的这些二进制恒权码对于错误检测是一致最优的。一路上,我们确定了这种二进制恒权码的距离分布。特别地,示出了从斯坦纳系统生成的二进制恒权码对于错误检测是一致最优的。因此,我们证明了夏,符,江和玲的猜想。此外,确定从Steiner系统生成的二进制恒权码的距离分布。最后,我们研究了二进制恒权码未检出错误概率的指数。我们推导了二进制恒定权码的未检测到的错误概率指数的一些界限。这些界限使我们能够扩展精确确定未发现错误概率的指数的区域。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号