首页> 外文期刊>IEEE Transactions on Information Theory >A fast lightweight approach to origin-destination IP traffic estimation using partial measurements
【24h】

A fast lightweight approach to origin-destination IP traffic estimation using partial measurements

机译:使用部分测量的快速轻量级方法进行始发地IP流量估计

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a novel approach is proposed for estimating traffic matrices. Our method, called PamTram for PArtial Measurement of TRAffic Matrices, couples lightweight origin-destination (OD) flow measurements along with a computationally lightweight algorithm for producing OD estimates. The first key aspect of our method is to actively select a small number of informative OD flows to measure in each estimation interval. To avoid the heavy computation of optimal selection, we use intuition from game theory to develop randomized selection rules, with the goals of reducing errors and adapting to traffic changes. We show that it is sufficient to measure only one flow per measurement period to drastically reduce errors-thus rendering our method lightweight in terms of measurement overhead. The second key aspect is an explanation and proof that an Iterative Proportional Fitting algorithm approximates traffic matrix estimates when the goal is a minimum mean-squared error; this makes our method lightweight in terms of computation overhead. A one-step error bound is provided for PamTram that bounds the average error for the worst scenario. We validate our method using data from Sprint's European Tier-1 IP backbone network and demonstrate its consistent improvement over previous methods.
机译:在本文中,提出了一种新颖的方法来估计交通矩阵。我们的方法称为PamTram,用于交通流量矩阵的局部测量,该方法将轻量级的原点(OD)流量测量与用于产生OD估算值的计算轻量级算法相结合。我们方法的第一个关键方面是在每个估计间隔中主动选择少量的有用OD流进行测量。为了避免繁琐的最优选择计算,我们使用博弈论的直觉来制定随机选择规则,以减少错误并适应交通变化。我们证明,每个测量周期仅测量一个流量就足以大大减少错误,从而使我们的方法在测量开销方面轻巧。第二个关键方面是一个解释和证明,即当目标为最小均方误差时,迭代比例拟合算法可以近似交通量矩阵估计值。这使我们的方法在计算开销方面轻巧。为PamTram提供了一个一步误差范围,该范围限制了最坏情况下的平均误差。我们使用来自Sprint的欧洲Tier-1 IP骨干网的数据验证了我们的方法,并证明了其相对于先前方法的持续改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号