首页> 外文期刊>IEEE Transactions on Information Theory >Upper Bounds on the Rate of LDPC Codes for a Class of Finite-State Markov Channels
【24h】

Upper Bounds on the Rate of LDPC Codes for a Class of Finite-State Markov Channels

机译:一类有限状态马尔可夫信道的LDPC码速率的上限

获取原文
获取原文并翻译 | 示例

摘要

In this correspondence, we consider the class of finite-state Markov channels (FSMCs) in which the channel behaves as a binary symmetric channel (BSC) in each state. Upper bounds on the rate of LDPC codes for reliable communication over this class of FSMCs are found. A simple upper bound for all noninverting FSMCs is first derived. Subsequently, tighter bounds are derived for the special case of Gilbert-Elliott (GE) channels. Tighter bounds are also derived over the class of FSMCs considered. The latter bounds hold almost-surely for any sequence of randomly constructed LDPC codes of given degree distributions. Since the bounds are derived for optimal maximum-likelihood decoding, they also hold for belief propagation decoding. Using the derivations of the bounds on the rate, some lower bounds on the density of parity check matrices for given performance over FSMCs are derived
机译:在这种对应关系中,我们考虑了有限状态马尔可夫信道(FSMC)的类别,其中该信道在每个状态下均表现为二进制对称信道(BSC)。找到了在此类FSMC上进行可靠通信的LDPC码速率的上限。首先推导所有同相FSMC的简单上限。随后,针对Gilbert-Elliott(GE)通道的特殊情况得出更严格的边界。在所考虑的FSMC类别上也得出了更严格的界限。对于给定的度数分布的任意随机构建的LDPC码序列,后一个边界几乎可以肯定地成立。由于边界是为最佳的最大似然解码而导出的,因此它们对于信念传播解码也同样适用。使用速率范围的推导,可以得出在FSMC上具有给定性能的奇偶校验矩阵密度的一些下限

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号