首页> 外文期刊>IEEE Transactions on Information Theory >Constructions of Optical 2-to-1 FIFO Multiplexers With a Limited Number of Recirculations
【24h】

Constructions of Optical 2-to-1 FIFO Multiplexers With a Limited Number of Recirculations

机译:具有有限循环次数的光学2比1 FIFO多路复用器的构造

获取原文
获取原文并翻译 | 示例

摘要

Recently, there has been a lot of attention in the literature on a less well-known aspect of queueing theory, the theory of the constructions of queues. Such an interest originates mainly from optical packet switching due to the lack of optical buffers. These constructions of optical queues are based on optical switches and fiber delay lines (SDL). Theoretical studies in the SDL constructions have been recently reported for the constructions of various types of optical queues, including output-buffered switches, first-in-first-out (FIFO) multiplexers, FIFO queues, last-in-first-out (LIFO) queues, priority queues, linear compressors, nonovertaking delay lines, and flexible delay lines. In this paper, we consider the constructions of optical 2-to-1 FIFO multiplexers with a limited number of recirculations through the fibers, which is a very important practical feasibility issue on the constructions of optical queues that has not been theoretically addressed before. Specifically, we consider the constructions of optical 2-to-1 FIFO multiplexers with buffer size at least 2n-1 by using a feedback system consisting of an (M+2)times(M+2) optical crossbar switch and M fiber delay lines under a simple packet routing policy and under the limitation that each packet can be recirculated through the M fibers at most k times. In one of our previous works, we have shown that this can be done by using n fibers with delays 1, 2, 22,..., 2n-1 if there is no limitation on the number of recirculations through the fibers. The main idea in our constructions in this paper is to use extra fibers (other than the n fibers with delays 1, 2, 22,..., 2n-1) with appropriately chosen delays to emulate the effective delays of the concatenations of some of the n fibers with delays 1, 2, 22,..., 2n-1 so that the number of recirculations is reduced by so doing. It turns out that the number of fibers needed and their delays a- - re determined based on a dynamic programming formulation obtained through a divide-and-conquer approach. We obtain a closed-form expression for the number of fibers needed in our constructions, and show that there are (r k) possible choices for the delays of the required fibers, where r is the remainder of n divided by k. Furthermore, we give the optimal choice of the fiber delays that achieves the maximum buffer size among the (r k) possible choices. Finally, we show that when n=k or nges2k, such an optimal choice also requires the minimum total fiber length among the (r k) possible choices
机译:最近,关于排队理论的鲜为人知的方面,即队列构造理论,在文献中引起了很多关注。由于缺乏光学缓冲器,这种兴趣主要来自光学分组交换。光队列的这些构造基于光交换机和光纤延迟线(SDL)。最近已经报道了SDL构造中的理论研究,涉及各种类型的光学队列的构造,包括输出缓冲交换机,先进先出(FIFO)多路复用器,FIFO队列,先进先出(LIFO) )队列,优先级队列,线性压缩器,非超车延迟线和灵活延迟线。在本文中,我们考虑通过光纤进行有限数量的循环的2对1 FIFO多路复用器的结构,这是光队列构造中一个非常重要的实际可行性问题,以前在理论上尚未解决。具体来说,我们考虑通过使用由(M + 2)×(M + 2)个光学交叉开关和M条光纤延迟线组成的反馈系统,构造缓冲区大小至少为2n-1的光学2比1 FIFO多路复用器的结构在一个简单的数据包路由策略下,并且每个数据包最多可以通过M条光纤循环k次。在我们以前的工作之一中,我们已经表明,如果对通过光纤的循环次数没有限制,则可以使用n根延迟时间为1、2、22,...,2n-1的光纤来完成此操作。本文中我们的结构的主要思想是使用具有适当选择的延迟的额外光纤(除了n,1、2、22,...,2n-1延迟的光纤以外)来模拟某些连接的有效延迟。延迟1、2、22,...,2n-1的n根光纤的数量,从而减少了循环次数。事实证明,基于通过分治法获得的动态编程公式,可以确定所需的光纤数量及其延迟。我们获得了构造中所需纤维数的闭合形式表达式,并表明所需纤维延迟的(r k)个可能选择,其中r是n的余数除以k。此外,我们给出了光纤延迟的最佳选择,该延迟可在(r k)个可能的选择中实现最大的缓冲区大小。最后,我们表明,当n = k或nges2k时,这种最佳选择还要求在(r k)个可能的选择中最小的总纤维长度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号