首页> 外文期刊>IEEE Transactions on Information Theory >On Correcting Bursts (and Random Errors) in Vector Symbol (n, k) Cyclic Codes
【24h】

On Correcting Bursts (and Random Errors) in Vector Symbol (n, k) Cyclic Codes

机译:关于校正矢量符号(n,k)循环码中的突发(和随机错误)

获取原文
获取原文并翻译 | 示例

摘要

In this communication, simple methods are shown for correcting bursts of large size and bursts combined with random errors using vector symbols and primarily vector xor and feedback shift register operations. One result is that any $(n, k)$ cyclic code with minimum distance ${> 2}$ can correct all full vector symbol error bursts of length $n-k-1$ or less if the error vectors are linearly independent. If the bursts are not full but contain some error-free components, the capability of correcting bursts up to $n-k$ or less is code dependent. Also, vector symbol decoding with Reed–Solomon component codes can correct, very simply, with probability ${geq 1}-n(n-k)2 ^{ -r}$, all cases of $e leq n-k-1~r$-bit random errors in any cyclic span of length $leq n-k$. The techniques often work when there is linear dependence. In cases where most errors are in a burst but a small number of errors are outside, the solution, given error-correcting capability, can be broken down into a simple solution for the small number of outside errors, followed by a simple subtraction to reveal all the error values in the burst part.
机译:在该通信中,示出了简单的方法,该简单的方法用于使用矢量符号以及主要是矢量异或和反馈移位寄存器操作来校正大尺寸的突发以及与随机错误相结合的突发。一个结果是,如果误差向量是线性独立的,则任何具有最小距离$ {> 2} $的$(n,k)$循环码都可以校正长度为$ n-k-1 $或更短的所有全矢量符号误差突发。如果突发不完整,但包含一些无错误的组件,则校正突发直到$ n-k $或更小的能力取决于代码。同样,使用里德-所罗门分量代码的矢量符号解码可以非常简单地以$ {geq 1} -n(nk)2 ^ {-r} $的概率校正所有情况下$ e leq nk-1〜r $-长度为$ leq nk $的任何循环跨度中的位随机错误。当存在线性相关性时,这些技术通常会起作用。如果大多数错误是突发性的,但少量错误在外部,则可以将具有给定的纠错能力的解决方案分解为针对少量外部错误的简单解决方案,然后通过简单的减法来揭示突发部分中的所有错误值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号