首页> 外文期刊>Information Theory, IEEE Transactions on >Efficient and Robust Compressed Sensing Using Optimized Expander Graphs
【24h】

Efficient and Robust Compressed Sensing Using Optimized Expander Graphs

机译:使用优化的扩展器图进行高效鲁棒的压缩传感

获取原文
获取原文并翻译 | 示例

摘要

Expander graphs have been recently proposed to construct efficient compressed sensing algorithms. In particular, it has been shown that any $n$-dimensional vector that is $k$-sparse can be fully recovered using $O(klog n)$ measurements and only $O(klog n)$ simple recovery iterations. In this paper, we improve upon this result by considering expander graphs with expansion coefficient beyond ${3over 4}$ and show that, with the same number of measurements, only $O(k)$ recovery iterations are required, which is a significant improvement when $n$ is large. In fact, full recovery can be accomplished by at most $2k$ very simple iterations. The number of iterations can be reduced arbitrarily close to $k$, and the recovery algorithm can be implemented very efficiently using a simple priority queue with total recovery time ${O(nlog({nover k})))}$. We also show that by tolerating a small penal-nty on the number of measurements, and not on the number of recovery iterations, one can use the efficient construction of a family of expander graphs to come up with explicit measurement matrices for this method. We compare our result with other recently developed expander-graph-based methods and argue that it compares favorably both in terms of the number of required measurements and in terms of the time complexity and the simplicity of recovery. Finally, we will show how our analysis extends to give a robust algorithm that finds the position and sign of the $k$ significant elements of an almost $k$-sparse signal and then, using very simple optimization techniques, finds a $k$-sparse signal which is close to the best $k$-term approximation of the original signal.
机译:最近提出了扩展器图以构造有效的压缩感测算法。特别地,已经表明,使用k O(klog n)的测量结果和仅k O(klog n)的简单恢复迭代就可以完全恢复k k稀疏的任何n维矢量。在本文中,我们通过考虑扩展系数超过$ {3over 4} $的扩展器图来改进此结果,并显示在相同数量的测量下,仅需要$ O(k)$恢复迭代,这是一个重要的过程$ n $大时改善。实际上,完全恢复最多可以通过$ 2k $个非常简单的迭代来完成。可以任意减少迭代次数,使其接近$ k $,并且可以使用具有总恢复时间$ {O(nlog({nover({nover k}))} $的简单优先级队列非常有效地实现恢复算法。我们还表明,通过对测量次数(而不是恢复迭代次数)容忍少量罚款,可以使用一系列扩展器图的有效构造为该方法提出明确的测量矩阵。我们将我们的结果与其他最近开发的基于扩展器图的方法进行了比较,并认为该方法在所需测量次数以及时间复杂度和恢复简便性方面均具有优势。最后,我们将展示我们的分析如何扩展以给出一个健壮的算法,该算法可以找到几乎$ k $稀疏信号的$ k $有效元素的位置和符号,然后使用非常简单的优化技术来找到$ k $ -稀疏信号,接近原始信号的最佳$ k $ -term近似值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号