首页> 外文期刊>Information Theory, IEEE Transactions on >Asymptotic Theorems for the Product of Certain Structured Random Matrices and Their Application to Analysis of Asynchronous CDMA
【24h】

Asymptotic Theorems for the Product of Certain Structured Random Matrices and Their Application to Analysis of Asynchronous CDMA

机译:某些结构化随机矩阵乘积的渐近定理及其在异步CDMA分析中的应用

获取原文
获取原文并翻译 | 示例

摘要

This paper consists of two parts. In the first part, asymptotic theorems about the product of certain structured random matrices are developed by means of the moment convergence theorem (MCT) and the free probability theory. This product of random matrices is a generalization of the product of a sample covariance matrix and an arbitrary Hermitian matrix. In the second part, the theoretical results obtained in the first part are applied to analyze a randomly spread asynchronous direct sequence–code-division multiple-access (DS-CDMA) system with both the number of users $K$ and the number of chips per symbol $N$ approaching infinity but the ratio $K/N$ kept as a finite constant. Two levels of asynchronism are considered; one is symbol-asynchronous but chip-synchronous, and the other is chip-asynchronous. Asymptotic spectral distribution (ASD) of cross-correlation matrix and asymptotic spectral efficiency are investigated. Conditions under which CDMA systems with various synchronism levels (synchronous and two levels of asynchronism) have the same performance are also established.
机译:本文由两部分组成。在第一部分中,利用矩收敛定理(MCT)和自由概率理论,建立了关于某些结构随机矩阵乘积的渐近定理。随机矩阵的乘积是样本协方差矩阵和任意厄米矩阵的乘积的推广。在第二部分中,将在第一部分中获得的理论结果用于分析用户数$ K $和芯片数都随机分布的异步直接序列-码分多址(DS-CDMA)系统每个符号$ N $接近无穷大,但比率$ K / N $保持为有限常数。考虑了两个异步级别:一个是符号异步但芯片同步的,另一个是芯片异步的。研究了互相关矩阵的渐近谱分布(ASD)和渐近谱效率。还建立了具有各种同步级别(同步和两个异步级别)的CDMA系统具有相同性能的条件。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号