首页> 外文期刊>Information Theory, IEEE Transactions on >Toeplitz Compressed Sensing Matrices With Applications to Sparse Channel Estimation
【24h】

Toeplitz Compressed Sensing Matrices With Applications to Sparse Channel Estimation

机译:Toeplitz压缩传感矩阵在稀疏信道估计中的应用

获取原文
获取原文并翻译 | 示例

摘要

Compressed sensing (CS) has recently emerged as a powerful signal acquisition paradigm. In essence, CS enables the recovery of high-dimensional sparse signals from relatively few linear observations in the form of projections onto a collection of test vectors. Existing results show that if the entries of the test vectors are independent realizations of certain zero-mean random variables, then with high probability the unknown signals can be recovered by solving a tractable convex optimization. This work extends CS theory to settings where the entries of the test vectors exhibit structured statistical dependencies. It follows that CS can be effectively utilized in linear, time-invariant system identification problems provided the impulse response of the system is (approximately or exactly) sparse. An immediate application is in wireless multipath channel estimation. It is shown here that time-domain probing of a multipath channel with a random binary sequence, along with utilization of CS reconstruction techniques, can provide significant improvements in estimation accuracy compared to traditional least-squares based linear channel estimation strategies. Abstract extensions of the main results are also discussed, where the theory of equitable graph coloring is employed to establish the utility of CS in settings where the test vectors exhibit more general statistical dependencies.
机译:压缩传感(CS)最近已成为一种强大的信号采集范例。从本质上讲,CS可以从相对较少的线性观测中以投影到测试向量集合上的形式恢复高维稀疏信号。现有结果表明,如果测试向量的条目是某些零均值随机变量的独立实现,则很有可能通过求解可处理的凸优化来恢复未知信号。这项工作将CS理论扩展到设置,在这些设置中测试矢量的条目表现出结构化的统计依赖性。因此,只要系统的脉冲响应(近似或精确)稀疏,CS就可以有效地用于线性,时不变的系统识别问题。立即的应用是在无线多径信道估计中。此处显示,与传统的基于最小二乘的线性信道估计策略相比,具有随机二进制序列的多径信道的时域探测以及CS重建技术的使用可以显着提高估计精度。还讨论了主要结果的抽象扩展,其中采用了等价图着色的理论来建立CS在测试矢量表现出更一般的统计依赖性的设置中的效用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号