首页> 外文期刊>Information Theory, IEEE Transactions on >On Correctable Errors of Binary Linear Codes
【24h】

On Correctable Errors of Binary Linear Codes

机译:二进制线性码的可纠正错误

获取原文
获取原文并翻译 | 示例

摘要

The error correction capability of binary linear codes with minimum distance decoding, in particular the number of correctable/uncorrectable errors, is investigated for general linear codes and the first-order Reed–Muller codes. For linear codes, a lower bound on the number of uncorrectable errors is derived. The bound for uncorrectable errors with a weight of half the minimum distance asymptotically coincides with the corresponding upper bound for Reed–Muller codes and random linear codes. For the first-order Reed–Muller codes, the number of correctable/uncorrectable errors with a weight of half the minimum distance plus one is determined. This result is equivalent to deriving the number of Boolean functions of $m$ variables with nonlinearity $2^{m-2}+1$ . The monotone error structure and its related notions larger half and trial set, which were introduced by Helleseth, Kløve, and Levenshtein, are mainly used to derive the results.
机译:针对通用线性码和一阶Reed-Muller码,研究了具有最小距离解码的二进制线性码的纠错能力,尤其是可纠正/不可纠正错误的数量。对于线性代码,得出不可纠正错误数的下限。权重为最小距离的一半的不可纠正错误的边界渐近地与Reed-Muller码和随机线性码的相应上限一致。对于一阶里德-穆勒码,确定权重为最小距离的一半加上一个的可纠正/不可纠正错误的数量。此结果等效于推导具有非线性度$ 2 ^ {m-2} + 1 $的$ m $变量的布尔函数数。 Helleseth,Kløve和Levenshtein引入的单调错误结构及其相关概念,大半和试验集主要用于得出结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号