首页> 外文期刊>Information Theory, IEEE Transactions on >New Bound on Frequency Hopping Sequence Sets and Its Optimal Constructions
【24h】

New Bound on Frequency Hopping Sequence Sets and Its Optimal Constructions

机译:跳频序列集的新界及其最优构造

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we derive a new bound on maximum nontrivial Hamming correlation of frequency hopping (FH) sequences from the Singleton bound in error correcting code literature, and we discuss the relation between the new bound and the known ones on FH sequences. Further, we construct two classes of FH sequences from punctured Reed–Solomon codes and one class of FH sequences from polynomial functions, which meet the new bound.
机译:在本文中,我们从纠错码文献中的Singleton边界中得出了跳频(FH)序列的最大非平凡汉明相关性的新界限,并讨论了该新界限与FH序列中已知界限之间的关系。此外,我们从打孔的Reed-Solomon码构造两类FH序列,并从多项式函数构造一类FH序列,它们满足新的界线。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号