首页> 外文期刊>Information Theory, IEEE Transactions on >A Parametric Approach to List Decoding of Reed-Solomon Codes Using Interpolation
【24h】

A Parametric Approach to List Decoding of Reed-Solomon Codes Using Interpolation

机译:使用插值的Reed-Solomon码列表解码的参数方法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we present a minimal list decoding algorithm for Reed-Solomon (RS) codes. Minimal list decoding for a code $C$ refers to list decoding with radius $L$, where $L$ is the minimum of the distances between the received word ${bf r}$ and any codeword in $C$. We consider the problem of determining the value of $L$ as well as determining all the codewords at distance $L$. Our approach involves a parametrization of interpolating polynomials of a minimal Gröbner basis $G$ . We present two efficient ways to compute $G$. We also show that so-called re-encoding can be used to further reduce the complexity. We then demonstrate how our parametric approach can be solved by a computationally feasible rational curve fitting solution from a recent paper by Wu. Besides, we present an algorithm to compute the minimum multiplicity as well as the optimal values of the parameters associated with this multiplicity, which results in overall savings in both memory and computation.
机译:在本文中,我们提出了一种针对Reed-Solomon(RS)码的最小列表解码算法。代码$ C $的最小列表解码是指半径为$ L $的列表解码,其中$ L $是接收到的单词$ {bf r} $与$ C $中任何代码字之间的最小距离。我们考虑确定$ L $的值以及确定距离$ L $的所有码字的问题。我们的方法涉及最小Gröbner基$ G $的插值多项​​式的参数化。我们提出了两种有效的方法来计算$ G $。我们还表明,可以使用所谓的重新编码来进一步降低复杂度。然后,我们将演示如何根据Wu的最新论文通过计算上可行的有理曲线拟合解决方案来解决我们的参数化方法。此外,我们提出了一种算法来计算最小多重性以及与此多重性相关联的参数的最佳值,从而节省了内存和计算量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号