首页> 外文期刊>Information Theory, IEEE Transactions on >Optimal Alphabets and Binary Labelings for BICM at Low SNR
【24h】

Optimal Alphabets and Binary Labelings for BICM at Low SNR

机译:低信噪比时BICM的最佳字母和二进制标签

获取原文
获取原文并翻译 | 示例

摘要

Optimal binary labelings, input distributions, and input alphabets are analyzed for the so-called bit-interleaved coded modulation (BICM) capacity, paying special attention to the low signal-to-noise ratio (SNR) regime. For 8-ary pulse amplitude modulation (PAM) and for 0.75 bit/symbol, the folded binary code results in a higher capacity than the binary reflected Gray code (BRGC) and the natural binary code (NBC). The 1 dB gap between the additive white Gaussian noise (AWGN) capacity and the BICM capacity with the BRGC can be almost completely removed if the input symbol distribution is properly selected. First-order asymptotics of the BICM capacity for arbitrary input alphabets and distributions, dimensions, mean, variance, and binary labeling are developed. These asymptotics are used to define first-order optimal (FOO) constellations for BICM, i.e., constellations that make BICM achieve the Shannon limit ${-}1.59$ dB. It is shown that the ${E_{rm b}}/N_0$ required for reliable transmission at asymptotically low rates in BICM can be as high as infinity, that for uniform input distributions and 8-PAM there are only 72 classes of binary labelings with a different first-order asymptotic behavior, and that this number is reduced to only 26 for 8-ary phase shift keying (PSK). A general answer to the question of FOO constellations for BICM is also given: using the Hadamard transform, it is found that for uniform input distributions, a constellation for BICM is FOO if and only if it is a linear projection of a hypercube. A constellation based on PAM or quadrature amplitude modulation input alphabets is FOO if and only if they are labeled by the NBC; if the constellation is based on PSK input alphabets instead, it can never be FOO if the input alphabet has more than four points, regardless of the labeling.
机译:针对所谓的比特交织编码调制(BICM)容量,分析了最佳的二进制标签,输入分布和输入字母,尤其要注意低信噪比(SNR)方案。对于8进制脉冲幅度调制(PAM)和0.75位/符号,折叠后的二进制代码比二进制反射格雷代码(BRGC)和自然二进制代码(NBC)产生更高的容量。如果正确选择了输入符号分布,则几乎可以完全消除加性高斯白噪声(AWGN)容量与带有BRGC的BICM容量之间的1 dB差距。针对任意输入字母和分布,尺寸,均值,方差和二进制标签的BICM能力的一阶渐近性得到了发展。这些渐近线用于定义BICM的一阶最佳(FOO)星座,即使BICM达到香农极限$ {-} 1.59 $ dB的星座。结果表明,BICM中渐近低速率下可靠传输所需的$ {E_ {rm b}} / N_0 $可能高达无穷大,对于均匀输入分布和8-PAM,只有72类二进制标记具有不同的一阶渐近行为,并且对于8进制相移键控(PSK),此数字减少为仅26。还给出了针对BICM的FOO星座问题的一般答案:使用Hadamard变换,发现对于均匀输入分布,BICM的星座只有且仅当是超立方体的线性投影时才为FOO。当且仅当它们由NBC标记时,基于PAM或正交幅度调制输入字母的星座才是FOO。如果星座基于PSK输入字母,则无论输入标签如何,如果输入字母具有四个以上的点,则永远不能为FOO。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号