首页> 外文期刊>Information Theory, IEEE Transactions on >Spectral Distribution of Random Matrices From Binary Linear Block Codes
【24h】

Spectral Distribution of Random Matrices From Binary Linear Block Codes

机译:来自二进制线性分组码的随机矩阵的频谱分布

获取原文
获取原文并翻译 | 示例

摘要

Let ${cal C}$ be a binary linear block code of length $n$, dimension $k$ and minimum Hamming distance $d$ over $mathop{rm GF}(2)^{n}$. Let $d^{perp}$ denote the minimum Hamming distance of the dual code of ${cal C}$ over $mathop{rm GF}(2)^{n}$. Let $varepsilon:mathop{rm GF}(2)^{n}mapsto{-1,1}^{n}$ be the component-wise mapping $varepsilon (v_{i}){:=}(-1)^{v_{i}}$, for ${bf v}=(v_{1},v_{2},ldots,v_{n})inmathop{rm GF}(2)^{n}$. Finally, for $p$nrightarrowinfty$ the empirical spectral distribution of the Gram matrix of ${{1}over{sqrt{n}}}{mmb{Phi}}_{cal C}$ resembles that of a random i.i.d. Rademacher matrix (i.e., the Marchenko–Pastur distribution). Moreover, an explicit asymptotic uniform bound on the distance of the empirical spectral distribution of the Gram matrix of ${{1}over{sqrt{n}}}{mmb{Phi}}_{cal C}$ to the Marchenko–Pastur distribution as a function of $y$ and $d^{perp}$ is presented.
机译:令$ {cal C} $为长度为$ n $,尺寸为$ k $且在$ mathop {rm GF}(2)^ {n} $上的最小汉明距离$ d $的二进制线性块代码。令$ d ^ {perp} $表示$ {cal C} $对$ mathop {rm GF}(2)^ {n} $的对偶代码的最小汉明距离。令$ varepsilon:mathop {rm GF}(2)^ {n} mapsto {-1,1} ^ {n} $为逐分量映射$ varepsilon(v_ {i}){:=}(-1) ^ {v_ {i}} $,为$ {bf v} = {v_ {1},v_ {2},ldots,v_ {n})进阶{rm GF}(2)^ {n} $。最后,对于$ p $ nrightarrowinfty $,$ {{1}在{sqrt {n}}} {mmb {Phi}} _ {cal C} $的Gram矩阵的经验光谱分布类似于随机i.i.d。 Rademacher矩阵(即Marchenko–Pastur分布)。此外,在$ {{1}在{sqrt {n}}} {mmb {Phi}} _ {cal C} $的Gram矩阵的经验谱分布的距离上,到Marchenko–Pastur的显式渐近统一边界给出了作为$ y $和$ d ^ {perp} $的函数的分布。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号