首页> 外文期刊>Information Theory, IEEE Transactions on >Generic Construction of Quaternary Sequences of Period $2N$ With Low Correlation From Quaternary Sequences of Odd Period $N$
【24h】

Generic Construction of Quaternary Sequences of Period $2N$ With Low Correlation From Quaternary Sequences of Odd Period $N$

机译:低奇数期$ N $的四元数列的低相关性周期$ 2N $的四元数列的一般构造

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a simple but generic method is proposed for transforming any family of quaternary sequences, with low correlation, of any odd period $N$ to another family of quaternary sequences of period $2N$ with low correlation. As an application of the generic method to sequence Family ${cal A}$, a new optimal quaternary sequence family with length $2(2^{n}-1)$, family size $2^{n}+1$ , and maximal nontrivial correlation value $2^{n+1over 2}+2$, where $n$ is an odd integer, is obtained. Most notably, unlike all the known optimal quaternary sequence families, the new family has a unique property that the odd integers 1, 3 and the even integers 0, 2 are allocated alternatively in all the sequences.
机译:在本文中,提出了一种简单但通用的方法,用于将任何具有低相关性,任意奇数周期$ N $的四元序列族转换为另一个具有低相关性的周期$ 2N $的四元序列族。作为对家庭$ {cal A} $进行序列化的通用方法的一种应用,它是一个新的最优四元序列家庭,其长度为$ 2(2 ^ {n} -1)$,家庭大小为$ 2 ^ {n} + 1 $,最大获得非平凡相关值$ 2 ^ {n + 1over 2} + 2 $,其中$ n $是一个奇数整数。最值得注意的是,与所有已知的最佳四元序列族不同,新族具有独特的属性,即在所有序列中交替分配奇数整数1、3和偶数整数0、2。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号