首页> 外文期刊>Information Theory, IEEE Transactions on >The Stability of Low-Rank Matrix Reconstruction: A Constrained Singular Value View
【24h】

The Stability of Low-Rank Matrix Reconstruction: A Constrained Singular Value View

机译:低秩矩阵重构的稳定性:约束奇异值视图

获取原文
获取原文并翻译 | 示例

摘要

The stability of low-rank matrix reconstruction with respect to noise is investigated in this paper. The $ell _{ast}$-constrained minimal singular value ( $ell _{ast}$-CMSV) of the measurement operator is shown to determine the recovery performance of nuclear norm minimization-based algorithms. Compared with the stability results using the matrix restricted isometry constant, the performance bounds established using $ell _{ast}$-CMSV are more concise, and their derivations are less complex. Isotropic and subgaussian measurement operators are shown to have $ell _{ast}$-CMSVs bounded away from zero with high probability, as long as the number of measurements is relatively large. The $ell _{ast}$-CMSV for correlated Gaussian operators are also analyzed and used to illustrate the advantage of $ell _{ast}$-CMSV compared with the matrix restricted isometry constant. We also provide a fixed point characterization of $ell _{ast}$-CMSV that is potentially useful for its computation.
机译:研究了低秩矩阵重构在噪声方面的稳定性。测量算符的$ ell_ {ast} $约束最小奇异值($ ell_ {ast} $-CMSV)可以确定基于核规范最小化的算法的恢复性能。与使用矩阵受限等距常数的稳定性结果相比,使用$ ell _ {ast} $-CMSV建立的性能范围更为简洁,并且推导的过程也不那么复杂。各向同性和亚高斯测量算子被证明具有$ ell _ {ast} $-CMSVs远离零的边界,只要测量的数量相对较大。还分析了相关高斯算子的$ ell_ {ast} $-CMSV并用于说明$ ell_ {ast} $-CMSV与矩阵受限等距常数相比的优势。我们还提供了$ ell _ {ast} $-CMSV的定点特征,这可能对其计算有用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号