首页> 外文期刊>Information Theory, IEEE Transactions on >Finding a Basis Conversion Matrix Using a Polynomial Basis Derived by a Small Multiplicative Cyclic Group
【24h】

Finding a Basis Conversion Matrix Using a Polynomial Basis Derived by a Small Multiplicative Cyclic Group

机译:使用由小的乘法循环组派生的多项式基础找到基础转换矩阵

获取原文
获取原文并翻译 | 示例

摘要

Several methods for finding a basis conversion matrix between two different bases in an extension field ${BBF _{p^{m}}}$ have been proposed. Among them, the one based on Gauss period normal basis (GNB) is on average the most efficient. However, since it needs to construct a certain tower field ${BBF _{(p^{m})^{n}}}$, some inefficient cases in which the towering degree $n$ becomes large have been reported. This paper first determines that such inefficient cases are caused by the GNB condition. In order to overcome this inefficiency, we propose a method that does not use any GNB in the target extension field ${BBF _{p^{m}}}$, but instead uses a certain polynomial basis in ${BBF _{p^{m}}}$ derived by a certain small cyclic group in ${BBF _{(p^{m})^{n}}}$. This causes relaxation of the condition for the towering degree $n$. In addition, our experimental results show that the proposed method substantially accelerates the computation time for finding a basis conversion matrix.
机译:已经提出了几种在扩展字段$ {BBF _ {p ^ {m}}} $中寻找两个不同碱基之间的碱基转换矩阵的方法。其中,基于高斯周期标准(GNB)的平均效率最高。然而,由于它需要构造一定的塔场$ {BBF _ {(p ^ {m})^ {n}}} $,因此报道了一些效率低下的情况,其中,塔高度$ n $变大。本文首先确定这种低效率的情况是由GNB条件引起的。为了克服这种低效率,我们提出了一种在目标扩展字段$ {BBF _ {p ^ {m}}} $中不使用任何GNB,而是在$ {BBF _ {p由$ {BBF _ {(p ^ {m})^ {n}}} $中的某个小型循环群派生的^ {m}}} $。这引起了高耸度$ n $的条件的松弛。此外,我们的实验结果表明,该方法大大加快了寻找基本转换矩阵的计算时间。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号