首页> 外文期刊>Information Theory, IEEE Transactions on >Sparse Solution of Underdetermined Systems of Linear Equations by Stagewise Orthogonal Matching Pursuit
【24h】

Sparse Solution of Underdetermined Systems of Linear Equations by Stagewise Orthogonal Matching Pursuit

机译:分段正交匹配追踪的欠定线性方程组的稀疏解

获取原文
获取原文并翻译 | 示例

摘要

Finding the sparsest solution to underdetermined systems of linear equations $y = Phi x$ is NP-hard in general. We show here that for systems with “typical”/“random” $Phi $, a good approximation to the sparsest solution is obtained by applying a fixed number of standard operations from linear algebra. Our proposal, Stagewise Orthogonal Matching Pursuit (StOMP), successively transforms the signal into a negligible residual. Starting with initial residual $r_{0} = y$, at the $s$ -th stage it forms the “matched filter” $Phi ^{T} r_{s-1}$, identifies all coordinates with amplitudes exceeding a specially chosen threshold, solves a least-squares problem using the selected coordinates, and subtracts the least-squares fit, producing a new residual. After a fixed number of stages (e.g., 10), it stops. In contrast to Orthogonal Matching Pursuit (OMP), many coefficients can enter the model at each stage in StOMP while only one enters per stage in OMP; and StOMP takes a fixed number of stages (e.g., 10), while OMP can take many (e.g., $n$). We give both theoretical and empirical support for the large-system effectiveness of StOMP. We give numerical examples showing that StOMP rapidly and reliably finds sparse solutions in compressed sensing, decoding of error-correcting codes, and overcomplete representation.
机译:对于线性方程组$ y = Phi x $的欠定系统,找到最稀疏的解决方案通常是NP-难的。我们在这里表明,对于具有“典型” /“随机” $ Phi $的系统,通过对线性代数应用固定数量的标准运算,可以获得对最稀疏解的良好近似。我们的建议,即逐级正交匹配追踪(StOMP),可以将信号依次转换为可忽略的残差。从初始残差$ r_ {0} = y $开始,在$ s $ -th阶段,它形成“匹配滤波器” $ Phi ^ {T} r_ {s-1} $,标识出幅度超过特殊值的所有坐标。选定的阈值,使用选定的坐标解决最小二乘问题,然后减去最小二乘拟合,从而产生新的残差。在固定数量的阶段(例如10个)之后,它停止。与正交匹配追踪(OMP)相比,StOMP的每个阶段都有很多系数可以进入模型,而OMP的每个阶段只能输入一个系数。 StOMP需要固定的阶段数(例如10个),而OMP可以进行许多阶段(例如$ n $)。我们为StOMP的大型系统有效性提供理论和经验支持。我们给出的数值示例表明,StOMP可在压缩感知,纠错码解码和不完整表示中快速可靠地找到稀疏解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号