首页> 外文期刊>IEEE Transactions on Information Theory >Data-Processing Bounds for Scalar Lossy Source Codes With Side Information at the Decoder
【24h】

Data-Processing Bounds for Scalar Lossy Source Codes With Side Information at the Decoder

机译:标量有损源代码在解码器中具有附带信息的数据处理界限

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we introduce new lower bounds on the distortion of scalar fixed-rate codes for lossy compression with side information available at the receiver. These bounds are derived by presenting the relevant random variables as a Markov chain and applying generalized data-processing inequalities a la Ziv and Zakai. We show that by replacing the logarithmic function with other functions, in the data-processing theorem we formulate, we obtain new lower bounds on the distortion of scalar coding with side information at the decoder. The usefulness of these results is demonstrated for uniform sources and the convex function $Q(t)=t^{1-alpha }$, $alpha >1$. The bounds in this case are shown to be better than one can obtain from the Wyner–Ziv rate-distortion function.
机译:在本文中,我们介绍了用于有损压缩的标量固定速率码的失真的新下限,并在接收器处提供了边信息。通过将相关的随机变量表示为马尔可夫链并应用广义数据处理不等式la Ziv和Zakai来得出这些界限。我们表明,通过用其他函数替换对数函数,在我们制定的数据处理定理中,我们获得了标量编码失真的新下限,该标量编码在解码器处带有辅助信息。证明了这些结果对于统一源和凸函数 $ Q(t)= t ^ {1-alpha} $ 的有用性。公式>,<公式ulatypetype =“ inline”> $ alpha> 1 $ 。在这种情况下,边界显示出比从Wyner-Ziv率失真函数获得的边界更好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号