首页> 外文期刊>IEEE Transactions on Information Theory >Approximate Sparsity Pattern Recovery: Information-Theoretic Lower Bounds
【24h】

Approximate Sparsity Pattern Recovery: Information-Theoretic Lower Bounds

机译:近似稀疏模式恢复:信息理论的下界

获取原文
获取原文并翻译 | 示例

摘要

Recovery of the sparsity pattern (or support) of an unknown sparse vector from a small number of noisy linear measurements is an important problem in compressed sensing. In this paper, the high-dimensional setting is considered. It is shown that if the measurement rate and per-sample signal-to-noise ratio (SNR) are finite constants independent of the length of the vector, then the optimal sparsity pattern estimate will have a constant fraction of errors. Lower bounds on the measurement rate needed to attain a desired fraction of errors are given in terms of the SNR and various key parameters of the unknown vector. The tightness of the bounds in a scaling sense, as a function of the SNR and the fraction of errors, is established by comparison with existing achievable bounds. Near optimality is shown for a wide variety of practically motivated signal models.
机译:从少量噪声线性测量中恢复未知稀疏矢量的稀疏模式(或支持)是压缩感知中的重要问题。在本文中,考虑了高维设置。结果表明,如果测量速率和每个样本的信噪比(SNR)是与向量长度无关的有限常数,则最佳稀疏模式估计将具有恒定的误差率。根据SNR和未知向量的各种关键参数,给出了达到所需误差比例所需的测量速率的下限。通过与现有可实现的边界进行比较,可以确定边界的紧密度(取决于SNR和误差分数)。对于各种实际动机的信号模型,显示出接近最佳的状态。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号