首页> 外文期刊>Applied and Computational Harmonic Analysis >The ℓ_(2,q) regularized group sparse optimization: Lower bound theory, recovery bound and algorithms
【24h】

The ℓ_(2,q) regularized group sparse optimization: Lower bound theory, recovery bound and algorithms

机译:ℓ_(2,q)正规化组稀疏优化:下限理论,恢复绑定和算法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we consider an unconstrained l(2,q) minimization for group sparse signal recovery. For this nonconvex and non-Lipschitz problem, we mainly focus on its local minimizers. Firstly, a uniform lower bound for nonzero groups of the local minimizers is presented. Secondly, under group restricted isometry property (GRIP) assumption, we provide a global recovery bound for points in a sublevel set of the objective function, as well as a local recovery bound for local minimizers. Thirdly, a sufficient condition for a stationary point to be a local minimizer is shown. Fourthly, inspired by the lower bound theory which indicates the sparsity of solutions, we propose a new efficient iteratively reweighted least square (IRLS) with thresholding algorithm, with nonexpansiveness of the group support set. Compared with the classical IRLS with smoothing algorithm, our algorithm performs better in both theoretical global convergence guarantee and numerical computation. (C) 2020 Elsevier Inc. All rights reserved.
机译:在本文中,我们考虑了对组稀疏信号恢复的不受约束的L(2,Q)最小化。对于这种非漏极和非嘴唇尖头问题,我们主要关注其当地的最低限度。首先,提出了局部最小化器的非零组的均匀下限。其次,在组受限的等距属性(GRIP)假设下,我们为客观函数的载流集中的点提供全局恢复,以及局部最小化器的本地恢复。第三,示出了静止点为局部最小化器的足够条件。第四,受到下限理论的启发,这表明了解决方案的稀疏性,我们提出了一种具有阈值化算法的新高效迭代重新重量,具有阈值化算法,具有组支持集的非分散性。与具有平滑算法的古典IRLS相比,我们的算法在理论上的全局收敛保证和数值计算中表现更好。 (c)2020 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号