首页> 外文期刊>Information Theory, IEEE Transactions on >Connectivity of Large Wireless Networks Under A General Connection Model
【24h】

Connectivity of Large Wireless Networks Under A General Connection Model

机译:通用连接模型下大型无线网络的连接

获取原文
获取原文并翻译 | 示例

摘要

This paper studies networks where all nodes are distributed on a unit square $A{buildrel{triangle}over{=}} [- {{1}over {2}}, {{1}over {2}}]^{2}$ following a Poisson distribution with known density $rho$ and a pair of nodes separated by an Euclidean distance $x$ are directly connected with probability $g_{r_{rho}}(x){buildrel{triangle}over{=}} g(x/r_{rho})$, independent of the event that any other pair of nodes are directly connected. Here, $g:[0,infty)rightarrow [{0,1}]$ satisfies the conditions of rotational invariance, nonincreasing monotonicity, integral boundedness, and $gleft (xright)=o(1/(x^{2}log^{2}x))$ ; further, $r_{rho}=sqrt {(log rho +b)/(Crho)}$ where $C=int_{Re^{2}}g(left Vert {mmb {x}}right Vert)d {mmb {x}}$ and $b$ is a constant. Denote the aforementioned network by ${cal G}left ({cal X}_{rho},g_{r_{rho}},Aright)$. We show that as $rho rightarrow infty$, 1) the distribution of the number of isolated nodes in ${cal G}left ({cal X}_{rho},g_{r_{rho}},Aright)$ converges to a Poisson distribution with mean $e^{-b}$ ; 2) asymptotically almost surely (a.a.s.) there - s no component in ${cal G}left ({cal X}_{rho},g_{r_{rho}},Aright)$ of fixed and finite order $k> 1$; c) a.a.s. the number of components with an unbounded order is one. Therefore, as $rho rightarrow infty$, the network a.a.s. contains a unique unbounded component and isolated nodes only; a sufficient and necessary condition for ${cal G}left ({cal X}_{rho},g_{r_{rho}},Aright)$ to be a.a.s. connected is that there is no isolated node in the network, which occurs when $brightarrow infty$ as $rho rightarrow infty$. These results expand recent results obtained for connectivity of random geometric graphs from the unit disk model and the fewer results from the log-normal model to the more general and more practical random connection model.
机译:本文研究的网络中所有节点均分布在单位平方$ A {buildrel {triangle} over {=}} [-{{1} over {2}},{{1} over {2}}] ^ {2 }具有已知密度$ rho $的Poisson分布和一对以欧几里得距离$ x $隔开的节点直接以概率$ g_ {r_ {rho}}(x){buildrel {triangle} over {=} } g(x / r_ {rho})$,独立于任何其他成对节点直接连接的事件。在这里,$ g:[0,infty)rightarrow [{0,1}] $满足旋转不变性,单调性不增加,积分有界性和$ gleft(xright)= o(1 /(x ^ {2} log ^ {2} x))$;此外,$ r_ {rho} = sqrt {(log rho + b)/(Crho)} $其中$ C = int_ {Re ^ {2}} g(left Vert {mmb {x}} right Vert)d {mmb {x}} $和$ b $是一个常数。用$ {cal G} left({cal X} _ {rho},g_ {r_ {rho}},Aright)$表示上述网络。我们显示出,作为$ rho rightarrow infty $,1)$ {cal G} left({cal X} _ {rho},g_ {r_ {rho}},Aright)$中的孤立节点数量分布收敛到均值$ e ^ {-b} $的泊松分布; 2)几乎肯定地(aas)渐近-固定和有限阶$ k>的$ {cal G} left({cal X} _ {rho},g_ {r_ {rho}},Aright)$中没有分量$; c)无限制顺序的组件数是1。因此,作为$ rho rightarrow infty $,网络a.a.s.包含唯一的无边界组件和仅隔离的节点;足以使$ {cal G} left({cal X} _ {rho},g_ {r_ {rho}},Aright)$ a.a.s.的充分必要条件。连接是指网络中没有孤立的节点,这在$ brightarrow infty $作为$ rho rightarrow infty $时发生。这些结果扩展了从单位圆盘模型获得的随机几何图形连通性的最新结果,从对数正态模型得到的结果越来越少,到了更通用,更实用的随机连接模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号