首页> 外文期刊>Information Theory, IEEE Transactions on >An Improved RIP-Based Performance Guarantee for Sparse Signal Recovery via Orthogonal Matching Pursuit
【24h】

An Improved RIP-Based Performance Guarantee for Sparse Signal Recovery via Orthogonal Matching Pursuit

机译:基于正交匹配追踪的基于RIP的改进性能保证,用于稀疏信号恢复

获取原文
获取原文并翻译 | 示例

摘要

A sufficient condition reported very recently for perfect recovery of a (K) -sparse vector via orthogonal matching pursuit (OMP) in (K) iterations (when there is no noise) is that the restricted isometry constant (RIC) of the sensing matrix satisfies (delta _{K+1} <({1}/{sqrt {K} +1})) . In the noisy case, this RIC upper bound along with a requirement on the minimal signal entry magnitude is known to guarantee exact support identification. In this paper, we show that, in the presence of noise, a relaxed RIC upper bound (delta _{K+1} <({sqrt {4K+1} -1}/{2K})) together with a relaxed requirement on the minimal signal entry magnitude suffices to achieve perfect support identification using OMP. In the noiseless case, our result asserts that such a relaxed RIC upper bound can ensure exact support recovery in (K) iterations: this narrows the gap between the so far best known bound (delta _{K+1} <({1}/{sqrt {K} +1})) and the ultimate performance guarantee (delta _{K+1} =({1}/{sqrt {K}})) . Our approach relies on a newly established near orthogonality condition, characterized via the achievable angles between two orthogonal sparse vectors upon compression, and, thus, better exploits the knowledge about the geometry of the compressed space. The proposed near orthogonality condition can be also exploited to derive less restricted sufficient conditions for signal reconstruction in two other compressive sensing problems, namely, compressive domain interferen- e cancellation and support identification via the subspace pursuit algorithm.
机译:最近报道了一个充分的条件,可以通过正交匹配追踪(OMP)完美恢复 (K) -稀疏向量)(在没有噪声的情况下) (K) 迭代中,是传感矩阵满足<内联公式> (delta _ {K + 1} <({1} / {sqrt {K} +1})) < / inline-formula>。在嘈杂的情况下,此RIC上限以及对最小信号输入幅度的要求是众所周知的,可以确保准确的支持识别。在本文中,我们表明,在存在噪声的情况下,松弛的RIC上限 (delta _ {K + 1} <({sqrt {4K + 1 } -1} / {2K})) 以及对最小信号输入幅度的轻松要求就足以使用OMP实现完美的支持识别。在无噪声的情况下,我们的结果断言,这样宽松的RIC上限可以确保 (K) 迭代:这缩小了迄今为止最著名的绑定 (delta _ {K + 1} <({1} / {sqrt {K} +1 })) 和最终性能保证 (delta _ {K + 1} =({1} / { sqrt {K}})) 。我们的方法依赖于新近建立的正交性条件,其特征在于压缩时两个正交稀疏矢量之间可达到的角度,因此可以更好地利用有关压缩空间几何的知识。提出的近正交条件还可以用于在其他两个压缩感知问题中,即压缩域干扰消除和通过子空间追踪算法的支持识别,获得较少受限的信号重建充分条件。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号