首页> 外文期刊>Information Theory, IEEE Transactions on >Error Exponent for Multiple Access Channels: Upper Bounds
【24h】

Error Exponent for Multiple Access Channels: Upper Bounds

机译:多路访问通道的误差指数:上限

获取原文
获取原文并翻译 | 示例

摘要

The problem of bounding the reliability function of a multiple access channel (MAC) is studied. Two new upper bounds on the error exponent of a two-user discrete memoryless (DM)-MAC are derived. The first bound (sphere packing) is an upper bound on the exponent of the average probability of error and is the first bound of this type that is zero outside the capacity region and thus results in a tighter sphere-packing exponent when compared with the tightest known exponent derived by Haroutunian. The second bound (minimum distance) is an upper bound on the exponent of the maximal (as opposed to average) probability of error. To obtain this bound, first, an upper bound on the minimum Bhattacharyya distance between codeword pairs is derived. For a certain class of two-user DM-MACs, an upper bound on the exponent of maximal probability of error is derived as a consequence of the upper bound on the minimum Bhattacharyya distance. We analytically evaluate the sphere packing bound for uniform composition codes for an additive and nonsymmetric channel and show that it is tight near the boundary of the capacity region, i.e., equal to the random coding lower bound.
机译:研究了限制多路访问信道(MAC)可靠性函数的问题。推导了两个用户离散无记忆(DM)-MAC的错误指数的两个新上限。第一个边界(球面堆积)是平均错误概率指数的上限,并且是此类型的第一个边界,在容量区域外为零,因此与最紧密的球面相比,球面堆积指数更紧密Haroutunian派生的已知指数。第二个界限(最小距离)是最大(相对于平均)错误概率指数的上限。为了获得该界限,首先,导出码字对之间的最小巴氏距离的上限。对于特定类别的两用户DM-MAC,由于最小Bhattacharyya距离的上限,因此得出了最大错误概率指数的上限。我们分析性地评估了加性和非对称通道的均匀组成代码的球体填充边界,并表明它在容量区域的边界附近是紧密的,即等于随机编码的下限。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号