首页> 外文期刊>Information Theory, IEEE Transactions on >Coordinated Multicell Beamforming for Massive MIMO: A Random Matrix Approach
【24h】

Coordinated Multicell Beamforming for Massive MIMO: A Random Matrix Approach

机译:大规模MIMO的协调多小区波束成形:随机矩阵方法

获取原文
获取原文并翻译 | 示例

摘要

We consider the problem of coordinated multicell downlink beamforming in massive multiple input multiple output (MIMO) systems consisting of cells, antennas per base station (BS) and user terminals (UTs) per cell. In particular, we formulate a multicell beamforming algorithm for massive MIMO systems that requires limited amount of information exchange between the BSs. The design objective is to minimize the aggregate transmit power across all the BSs subject to satisfying the user signal-to-interference-noise ratio (SINR) constraints. The algorithm requires the BSs to exchange parameters which can be computed solely based on the channel statistics rather than the instantaneous channel state information (CSI). We make use of tools from random matrix theory to formulate the decentralized algorithm. We also characterize a lower bound on the set of target SINR values for which the decentralized multicell beamforming algorithm is feasible. We further show that the performance of our algorithm asymptotically matches the performance of the centralized algorithm with full CSI sharing. While the original result focuses on minimizing the aggregate transmit power across all the BSs, we formulate a heuristic extension of this algorithm to incorporate a practical constraint in multicell systems, namely the individual BS transmit power constraints. Finally, we investigate the impact of imperfect CSI and pilot contamination effect on the performance of the decentralized algorithm, and propose a heuristic extension of the algorithm to accommodate these issues. Simulation results illustrate that our algorithm closely satisfies the target SINR constraints and achieves minimum power in the regime of massive MIMO systems. In addition, it also provides su- stantial power savings as compared with zero-forcing beamforming when the number of antennas per BS is of the same orders of magnitude as the number of UTs per cell.
机译:我们考虑在大规模多输入多输出(MIMO)系统中协调多小区下行链路波束成形的问题,该系统由小区,每个基站的天线(BS)和每个小区的用户终端(UT)组成。特别是,我们为大规模MIMO系统制定了一种多小区波束成形算法,该算法要求BS之间的信息交换量有限。设计目标是在满足用户信号干扰噪声比(SINR)约束的情况下,使所有BS上的总发射功率最小。该算法要求BS交换参数,这些参数只能根据信道统计信息而不是瞬时信道状态信息(CSI)进行计算。我们利用随机矩阵理论中的工具来制定分散算法。我们还表征了目标SINR值集的下限,对于该下限,分散式多小区波束成形算法是可行的。我们进一步表明,我们的算法的性能与完全CSI共享的渐进式匹配集中化算法的性能。虽然原始结果集中在最小化所有BS上的总发射功率上,但我们制定了该算法的启发式扩展,以将实际约束纳入多小区系统中,即各个BS发射功率约束。最后,我们研究了不完善的CSI和导频污染效应对分散算法性能的影响,并提出了启发式算法扩展以适应这些问题。仿真结果表明,我们的算法非常满足目标SINR约束,并在大规模MIMO系统中实现了最低功耗。另外,当每个基站的天线数量与每个小区的UT数量级相同时,与零强制波束成形相比,它还可以节省大量功率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号